

SMRT Documentation

The SMRT API documentation describes the structure of the package and modules and provides detailed information on the classes and functions. It is not a practical guide for beginners to learn SMRT even though a few examples are sometimes given. We recommend to first read the tutorials <link here> and then use this API documentation as a further step to exploit SMRT in depth. SMRT extensively uses default/optional arguments in functions to provide a simple yet extendable interface. The API documentation is the only valid/up-to-date reference for these default behaviours as it is auto-generated from source. For developers who want to implement new behaviour in SMRT for their own use or for improving SMRT, we recomend to read the developer guidelines <link here> and to contact the authors of the model to discuss about the best/most generic approach to solve your problem. More documentation for improving SMRT will be prepared in the future.

The following package describes all the packages available in SMRT. The inputs package includes the functions to build the medium and the sensor configuration, it will include in the future any useful functions for inputs from various sources (text file, snowpack model simulations, etc). The permittivity package provides formulae to compute the permittivity of raw materials such as ice. The microstructure_model package includes all the representations of the snow micro-structure available. It provides information on the required and optional parameters of each microstrcuture_model. interface provides the formulation for different types of inter-layer interfaces (such as flat, rugged in the future).

The substrate package and atmosphere packages provide the lower and upper boundary conditions of the radiative transfer. Substrate can represent the soil, ice, ocean.
It is worth noting that these modules describe the half-space semi-infinite media under and above the snowpack. It means they have uniform properties and especially temperature which is common practice when the focus is on the snowpack. However, for a proper fully coupled multi-layered soil-snow-atmosphere radiative transfer model, it would be necessary to describe the soil and the atmosphere as layers (exactly as the snowpack is made of snow layers) and to implement emmodel adequately to the soil and atmosphere.

The emmodel package includes all the scattering theories available in SMRT (iba, dmrt, independent spheres (Rayleigh), …). In some case there is an inter-dependence between the choices of micro-structure and of electromagnetic theory. For instance, dmrt_shortrange only works with sticky_hard_spheres microstructure (this is inherent to theory) and rayleigh would work with any microstructure model based on spheres (ie. that defines a radius parameter).

The rtsolver package includes the numerical codes that solves the radiative transfer equation.

The core package is where the SMRT machinery is implemented and especially the most important objects
Sensor, Layer, Snowpack, Model, etc. It may be useful to understand how these objects work but it is not necessary as most of them (all) are created by helper functions which are much more convenient to use than class constructors. The only exception, which is worth exploring a bit, is Result. It provides useful methods to extract the result of the radiative calculation.
In general, it is not recommended to modify/extend core for normal needs. This package does contain any science.

The utils package provides various useful tools to work with SMRT, but they are not strictly necessary. This package includes wrappers to some off-the-shelf models such as DMRT-QMS, HUT and MEMLS.

	Inputs

	Permittivity

	Microstructure Model

	Interface

	Substrate

	Atmosphere

	Electromagnetic Model

	Radiative Transfer Solver

	Core

	Utilities and tools

	Developer Guidelines

	SMRT Documentation

Indices and tables

	Index

	Module Index

	Search Page

smrt.inputs package

Submodules

smrt.inputs.altimeter_list module

	
envisat_ra2(channel=None)

	return an Altimeter instance for the ENVISAT RA2 altimeter.

	Parameters

	channel – can be ‘S’, ‘Ku’, or both. Default is both.

	
sentinel3_sral(channel=None)

	return an Altimeter instance for the Sentinel 3 SRAL instrument.

	Parameters

	channel – can be ‘Ku’ only (‘C’ is to be implemented)

	
saral_altika()

	return an Altimeter instance for the Saral/AltiKa instrument.

	
cryosat2_lrm()

	Return an altimeter instance for CryoSat-2.

Parameters from https://earth.esa.int/web/eoportal/satellite-missions/c-missions/cryosat-2

Altitude from https://doi.org/10.1016/j.asr.2018.04.014

Beam width is 1.08 along track and 1.2 across track

Note

nominal_gate parameter governs timing of leading edge

Example:

sensor = altimeter_list.cryosat2_lrm()

	
cryosat2_sin()

	Return an altimeter instance for CryoSat-2: SIN mode

Parameters from https://earth.esa.int/web/eoportal/satellite-missions/c-missions/cryosat-2

Altitude from https://doi.org/10.1016/j.asr.2018.04.014

Beam width is 1.08 along track and 1.2 across track

Note

Use this sensor for pseudo-low resolution mode of CryoSat2 operating in SIN mode

Example:

sensor = altimeter_list.cryosat2_sin()

	
asiras_lam(altitude=None)

	Return an altimeter instance for ASIRAS in Low Altitude Mode

Parameters from https://earth.esa.int/web/eoportal/airborne-sensors/asiras

Beam width is 2.2 x 9.8 deg

	Parameters

	altitude – aircraft altitude in m

Example:

sensor = altimeter_list.asiras_lam(altitude=500)

smrt.inputs.make_medium module

The helper functions in this module are used to create snowpacks, sea-ice and other media. They are user-friendly and recommended
for most usages. Extension of these functions is welcome on the condition they keep a generic structure.

The function make_snowpack() is the first entry point the user should consider to build a snowpack.
For example:

from smrt import make_snowpack

sp = make_snowpack([1000], density=[300], microstructure_model='sticky_hard_spheres', radius=[0.3e-3], stickiness=0.2)

creates a semi-infinite snowpack made of sticky hard spheres with radius 0.3mm and stickiness 0.2.
The Snowpack object is in the sp variable.

Note that make_snowpack is directly imported from smrt instead of smrt.inputs.make_medium. This feature is for convenience.

	
make_medium(data, surface=None, interface=None, substrate=None, **kwargs)

	build a multi-layered medium using a pandas DataFrame (or a dict that can be transformed into a DataFrame) and optinal arguments.
The ‘medium’ column (or key) in data indicates the medium type: ‘snow’ or ‘ice’. If not given, it defaults to ‘snow’.
‘data’ must contain enough information to build either a snowpack or an ice_column. The minimum requirements are:

	for a snowpack: (‘z’ or ‘thickness’), ‘density’, ‘microstructure_model’ and the arguments required by the microstructural_model.

	for a ice column: ice_type, (‘z’ or ‘thickness’), ‘temperature’, ‘salinity’, ‘microstructure_model’ and the arguments required by

the microstructural_model.

When reading a dataframe from disk for instance, it is convenient to use df.rename(columns={…}) to map the column names of the file
to the column names required by SMRT.

if ‘z’ is given, the thickness is deduced using compute_thickness_from_z().

** Warning **: Using this function is a bit dangerous as any unrecognized column names are silently ignored.
For instance, a column named ‘Temperature’ is ignore (due to the uppercase), and the temperature in the snowpack
will be set to its default value (273.15 K). This issue applies to any optional argument. Double ckeck the spelling of the columns.

	** Note **: make_medium create laters using all the columns in the dataframe. It means that any column name becomes an attribute of

	the layer objects, even if not recognized/used by SMRT. This can be seen as an interesting feature to store information in layers,
but this is also dangerous if column names collide with internal layer attributes or method names. It is recommended to clean
the dataframe (with df.drop(columns=[…])) before calling make_medium.

	
make_snowpack(thickness, microstructure_model, density, interface=None, surface=None, substrate=None, atmosphere=None, **kwargs)

	build a multi-layered snowpack. Each parameter can be an array, list or a constant value.

	Parameters

	thickness – thicknesses of the layers in meter (from top to bottom). The last layer thickness can be “numpy.inf”

for a semi-infinite layer.
:param microstructure_model: microstructure_model to use (e.g. sticky_hard_spheres or independent_sphere or exponential).
:param surface: type of surface interface, flat/fresnel is the default. If surface and interface are both set,
the interface must be a constant refering to all the “internal” interfaces.
:param interface: type of interface, flat/fresnel is the default. It is usually a string for the interfaces
without parameters (e.g. Flat or Transparent) or is created with make_interface() in more complex cases.
Interface can be a constant or a list. In the latter case, its length must be the same as the number of layers,
and interface[0] refers to the surface interface.
:param density: densities of the layers.
:param substrate: set the substrate of the snowpack. Another way to add a substrate is to use the + operator
(e.g. snowpack + substrate).
:param **kwargs: All the other parameters (temperature, microstructure parameters, emmodel, etc.) are given as optional arguments
(e.g. temperature=[270, 250]).
They are passed for each layer to the function make_snow_layer().
Thus, the documentation of this function is the reference. It describes precisely the available parameters.
The microstructure parameter(s) depend on the microstructure_model used and is documented in each microstructure_model module.

e.g.:

sp = make_snowpack([1, 10], "exponential", density=[200,300], temperature=[240, 250], corr_length=[0.2e-3, 0.3e-3])

	
make_snow_layer(layer_thickness, microstructure_model, density, temperature=273.15, ice_permittivity_model=None, background_permittivity_model=1.0, volumetric_liquid_water=None, liquid_water=None, salinity=0, medium='snow', **kwargs)

	Make a snow layer for a given microstructure_model (see also make_snowpack()
to create many layers). The microstructural parameters depend on the microstructural model and should be given as
additional arguments to this function. To know which parameters are required or optional, refer to the documentation
of the specific microstructure model used.

	Parameters

	
	layer_thickness – thickness of snow layer in m.

	microstructure_model – module name of microstructure model to be used.

	density – density of snow layer in kg m -3. Includes the ice and water phases.

	temperature – temperature of layer in K.

	ice_permittivity_model – permittivity formulation of the scatterers (default is ice_permittivity_matzler87).

	background_permittivity_model – permittivity formulation for the background (default is air).

	volumetric_liquid_water – volume of liquid water with respect to the volume of snow (default=0).

	liquid_water – May be depreciated in the future (use instead volumetric_liquid_water): volume of liquid water

with respect to ice+water volume (default=0). liquid_water = water_volume / (ice_volume + water_volume).
:param salinity: salinity in kg/kg, for using PSU as unit see PSU constant in smrt module (default = 0).
:param medium: indicate which medium the layer is made of (“snow” is a default).
It is used when emmodel is a dictionary mapping from medium to emmodels in make_model()
:param kwargs: other microstructure parameters are given as optional arguments (in Python words) but may be required (in SMRT words).
See the documentation of the microstructure model.

	Returns

	SnowLayer instance

	
class SnowLayer(*args, density=None, volumetric_liquid_water=None, liquid_water=None, **kwargs)

	Bases: smrt.core.layer.Layer

Specialized Layer class for snow. It deals with the calculation of the frac_volume and the liquid_water
from density and volumetric_liquid_water. Alternatively it is possible to set liquid_water directly but this is
not recommended anymore.

	
__init__(*args, density=None, volumetric_liquid_water=None, liquid_water=None, **kwargs)

	Build a snow layer.

	Parameters

	
	thickness – thickness of snow layer in m

	microstructure_model – module name of microstructure model to be used

	temperature – temperature of layer in K

	permittivity_model – list or tuple of permittivity value or model for the background and materials (e.g. air and ice). The permittivity can be

given as a complex (or real) value or a function that return a value (see smrt.permittivity modules)
:param inclusion_shape: assumption for shape of air/brine inclusions (so far, “spheres” and “random_needles” (i.e. elongated ellipsoidal inclusions) and “mix_spheres_needles” are implemented)

	
update(density=None, volumetric_liquid_water=None, liquid_water=None, **kwargs)

	update the density and/or volumetric_liquid_water.
This method must be used every time density and/or volumetric_liquid_water are changed.
Setting directly the corresponding attributes of the Layer object raises an error because
a recalculation of the frac_volume and liquid_volume is necessary every time one of these variables
is changed.

	
static compute_frac_volumes(density, volumetric_liquid_water=None, liquid_water=None)

	compute and return the fractional volumes:
- frac_volume =(ice+water) / (ice+water+air)
- liquid_water =(water) / (ice+water)

	
__doc__ = 'Specialized Layer class for snow. It deals with the calculation of the frac_volume and the liquid_water\n from density and volumetric_liquid_water. Alternatively it is possible to set liquid_water directly but this is\n not recommended anymore.\n '

	

	
__module__ = 'smrt.inputs.make_medium'

	

	
make_ice_column(ice_type, thickness, temperature, microstructure_model, brine_inclusion_shape='spheres', salinity=0.0, brine_volume_fraction=None, brine_permittivity_model=None, ice_permittivity_model=None, saline_ice_permittivity_model=None, porosity=0, density=None, add_water_substrate=True, surface=None, interface=None, substrate=None, atmosphere=None, **kwargs)

	Build a multi-layered ice column. Each parameter can be an array, list or a constant value.

ice_type variable determines the type of ice, which has a big impact on how the medium is modelled and the parameters:
- First year ice is modelled as scattering brines embedded in a pure ice background
- Multi year ice is modelled as scattering air bubbles in a saline ice background (but brines are non-scattering in this case).
- Fresh ice is modelled as scattering air bubbles in a pure ice background (but brines are non-scattering in this case).

First-year and multi-year ice is equivalent only if scattering and porosity are nulls. It is important to understand that
in multi-year ice scattering by brine pockets is neglected because scattering is due to air bubbles and the emmodel
implemented up to now are not able to deal with three-phase media.

	Parameters

	
	ice_type – Ice type. Options are “firstyear”, “multiyear”, “fresh”

	thickness – thicknesses of the layers in meter (from top to bottom). The last layer thickness can be “numpy.inf”

for a semi-infinite layer.
:param temperature: temperature of ice/water in K
:param brine_inclusion_shape: assumption for shape of brine inclusions. So far, “spheres” or “random_needles”
(i.e. elongated ellipsoidal inclusions), and “mix” (a mix of the two) are implemented.
:param salinity: salinity of ice/water in kg/kg (see PSU constant in smrt module). Default is 0. If neither salinity
nor brine_volume_fraction are given, the ice column is considered to consist of fresh water ice.
:param brine_volume_fraction: brine / liquid water fraction in sea ice, optional parameter, if not given brine volume fraction is
calculated from temperature and salinity in ~.smrt.permittivity.brine_volume_fraction
:param density: density of ice layer in kg m -3
:param porosity: porosity of ice layer (0 - 1). Default is 0.
:param add_water_substrate: Adds a substrate made of water below the ice column.
Possible arguments are True (default) or False. If True looks for ice_type to determine if a saline or fresh water layer is
added and/or uses the optional arguments ‘water_temperature’, ‘water_salinity’ of the water substrate.
:param surface: type of surface interface, flat/fresnel is the default. If surface and interface are both set, the interface must be
a constant refering to all the “internal” interfaces.
:param interface: type of interface, flat/fresnel is the default. It is usually a string for the interfaces without parameters
(e.g. Flat or Transparent) or is created with make_interface() in more complex cases.
Interface can be a constant or a list. In the latter case, its length must be the same as the number of layers,
and interface[0] refers to the surface interface.
:param substrate: if add_water_substrate is False, the substrate can be prescribed with this argument.

All the other optional arguments are passed for each layer to the function make_ice_layer().
The documentation of this function describes in detail the parameters used/required depending on ice_type.

	
make_ice_layer(ice_type, layer_thickness, temperature, salinity, microstructure_model, brine_inclusion_shape='spheres', brine_volume_fraction=None, porosity=0, density=None, brine_permittivity_model=None, ice_permittivity_model=None, saline_ice_permittivity_model=None, medium='ice', **kwargs)

	Make an ice layer for a given microstructure_model (see also make_ice_column()
to create many layers). The microstructural parameters depend on the microstructural model and should be given as
additional arguments to this function. To know which parameters are required or optional, refer to the documentation
of the specific microstructure model used.

	Parameters

	
	ice_type – Assumed ice type

	layer_thickness – thickness of ice layer in m

	temperature – temperature of layer in K

	salinity – (firstyear and multiyear) salinity in kg/kg (see PSU constant in smrt module)

	brine_inclusion_shape – (firstyear and multiyear) assumption for shape of brine inclusions (so far,

“spheres” and “random_needles” (i.e. elongated ellipsoidal inclusions), and “mix_spheres_needles” are implemented)
:param brine_volume_fraction: (firstyear and multiyear) brine / liquid water fraction in sea ice, optional parameter,
if not given brine volume fraction is calculated from temperature and salinity in ~.smrt.permittivity.brine_volume_fraction
:param density: (multiyear) density of ice layer in kg m -3. If not given, density is calculated from temperature,
salinity and ice porosity.
:param porosity: (mutliyear and fresh) air porosity of ice layer (0..1). Default is 0.
:param ice_permittivity_model: (all) pure ice permittivity formulation (default is ice_permittivity_matzler06)
:param brine_permittivity_model: (firstyear and multiyear) brine permittivity formulation (default is brine_permittivity_stogryn85)
:param saline_ice_permittivity_model: (multiyear) model to mix ice and brine. The default uses polder van staten and
ice_permittivity_model and brine_permittivity_model. It is highly recommanded to use the default.
:param kwargs: other microstructure parameters are given as optional arguments (in Python words) but may be required (in SMRT words).
:param medium: indicate which medium the layer is made of (“ice” is a default).
It is used when emmodel is a dictionary mapping from medium to emmodels in make_model()

See the documentation of the microstructure model.

	Returns

	Layer instance

	
water_parameters(ice_type, **kwargs)

	Make a semi-infinite water layer.

	Parameters

	ice_type – ice_type is used to determine if a saline or fresh water layer is added

Optional arguments are ‘water_temperature’, ‘water_salinity’ and ‘water_depth’ of the water layer.

	
bulk_ice_density(temperature, salinity, porosity)

	Computes bulk density of sea ice (in kg m -3), when considering the influence from brine, solid salts, and
air bubbles in the ice. Formulation from Cox & Weeks (1983): Equations for determining the gas and brine volumes in sea ice samples,
J Glac. Developed for temperatures between -2–30°C. For higher temperatures (>2°C) is used the formulation from
Lepparanta & Manninen (1988): The brine and gas content of sea ice with attention to low salinities and high temperatures.

	Parameters

	
	temperature – Temperature in K

	salinity – salinity in kg/kg (see PSU constant in smrt module)

	porosity – Fractional volume of air inclusions (0..1)

	Returns

	Density of ice mixture in kg m -3

	
make_generic_stack(thickness, temperature=273, ks=0, ka=0, effective_permittivity=1, interface=None, substrate=None, atmosphere=None)

	build a multi-layered medium with prescribed scattering and absorption coefficients and effective permittivity.
Must be used with presribed_kskaeps emmodel.

	Parameters

	thickness – thicknesses of the layers in meter (from top to bottom). The last layer thickness can be “numpy.inf” for

a semi-infinite layer.
:param temperature: temperature of layers in K
:param ks: scattering coefficient of layers in m^-1
:param ka: absorption coefficient of layers in m^-1
:param interface: type of interface, flat/fresnel is the default

	
make_generic_layer(layer_thickness, ks=0, ka=0, effective_permittivity=1, temperature=273)

	Make a generic layer with prescribed scattering and absorption coefficients and effective permittivity.
Must be used with presribed_kskaeps emmodel.

	Parameters

	
	layer_thickness – thickness of ice layer in m

	temperature – temperature of layer in K

	ks – scattering coefficient of layers in m^-1

	ka – absorption coefficient of layers in m^-1

	Returns

	Layer instance

	
make_atmosphere(atmosphere_model, **kwargs)

	make a atmospheric single-layer using the prescribed atmosphere model.
Warning: this function is subject to change in the future when refactoring how SMRT deals with atmosphere.

	Parameters

	
	atmosphere_model – the name of the model to use. The available models are in smrt.atmosphere.

	**kwargs – all the parameters used by the atmosphere_model.

	
compute_thickness_from_z(z)

	
	Compute the thickness of layers given the elevation z. Whatever the sign of z, the order MUST be from the topmost layer to the

	lowermost.

Several situation are accepted and interpretated as follows:
- z is positive and decreasing. The first value is the height of the surface about the ground (z=0) and z represents the top elevation
of each layer. This is typical of the seasonal snowpack.
- z is negative and decreasing. The first value is the elevation of the bottom of the first layer with respect to the surface (z=0).
This is typical of a snowpack on ice-sheet.
- z is positive and increasing. The first value is the depth of the bottom of the first layer with respect to the surface.
This is typical of a snowpack on ice-sheet.
- other case, when z is not monoton or is increasing with negative value raises an error.

Because z indicate the top or the bottom of a layer depending whether z=0 is the ground or the surface,
the value 0 can never be in z. This raises an error.

smrt.inputs.make_soil module

This module provides a function to build soil model and provides some soil permittivity formulae.

To create a substrate, use/implement an helper function such as make_soil(). This function is able to
automatically load a specific soil model and provides some soil permittivity formulae as well.

Examples:

from smrt import make_soil
soil = make_soil("soil_wegmuller", "dobson85", moisture=0.2, sand=0.4, clay=0.3, drymatter=1100, roughness_rms=1e-2)

It is recommand to first read the documentation of make_soil() and then explore the different types of soil
models.

	
make_soil(substrate_model, permittivity_model, temperature, moisture=None, sand=None, clay=None, drymatter=None, **kwargs)

	Construct a soil instance based on a given surface electromagnetic model, a permittivity model and parameters

	Parameters

	
	substrate_model – name of substrate model, can be a class or a string. e.g. fresnel, wegmuller…

	permittivity_model – permittivity_model to use. Can be a name (“hut_epss”, “dobson85”, “montpetit2008”), a function of

frequency and temperature or a complex value.
:param moisture: soil moisture in m:sup:3 m:sup:-3 to compute the permittivity. This parameter is used depending on the permittivity_model.
:param sand: soil relative sand content. This parameter is used or not depending on the permittivity_model.
:param clay: soil relative clay content. This parameter is used or not depending on the permittivity_model.
:param drymatter: soil content in dry matter in kg m:sup:-3. This parameter is used or not depending on the permittivity_model.

	Parameters

	**kwargs – geometrical parameters depending on the substrate_model. Refer to the document of each model to see the

list of required and optional parameters.
Usually, it is roughness_rms, corr_length, …

Usage example:

	::

	TOTEST: bottom = substrate.make(‘Flat’, permittivity_model=complex(‘6-0.5j’))
TOTEST: bottom = substrate.make(‘Wegmuller’, permittivity_model=’soil’, roughness_rms=0.25, moisture=0.25)

	
soil_dielectric_constant_dobson(frequency, tempK, SM, S, C)

	

	
soil_dielectric_constant_hut(frequency, tempK, SM, sand, clay, dm_rho)

	

	
soil_dielectric_constant_monpetit2008(frequency, temperature)

	Soil dielectric constant formulation based on the formulation Montpetit et al. 2018. The formulation is only valid for below-frrezing point temperature.

Reference: Montpetit, B., Royer, A., Roy, A., & Langlois, A. (2018). In-situ passive microwave emission model parameterization of sub-arctic frozen organic soils. Remote Sensing of Environment, 205, 112–118. https://doi.org/10.1016/j.rse.2017.10.033

smrt.inputs.make_substrate module

smrt.inputs.sensor_list module

The sensor configuration includes all the information describing the sensor viewing geometry (incidence, …)
and operating parameters (frequency, polarization, …). The easiest and recommended way to create a Sensor instance is
to use one of the convenience functions listed below. The generic functions passive() and active() should cover all the usages,
but functions for specific sensors are more convenient. See examples in the functions documentation below. We recommend to add new sensors/functions here and share your file to be included in SMRT.

	
passive(frequency, theta, polarization=None, channel_map=None, name=None)

	Generic configuration for passive microwave sensor.

Return a Sensor for a microwave radiometer with given frequency, incidence angle and polarization

	Parameters

	
	frequency – frequency in Hz

	theta – viewing angle or list of viewing angles in degrees from vertical. Note that some RT solvers compute all
viewing angles whatever this configuration because it is internally needed part of the multiple scattering calculation.
It it therefore often more efficient to call the model once with many viewing angles instead of calling it many times
with a single angle.

	polarization (list of characters) – H and/or V polarizations. Both polarizations is the default. Note that most RT solvers compute all
the polarizations whatever this configuration because the polarizations are coupled in the RT equation.

	channel_map (dict) – map channel names (keys) to configuration (values). A configuration is a dict with frequency, polarization and other
such parameters to be used by Result to select the results.

	name (string) – name of the sensor

	Returns

	Sensor instance

Usage example:

from smrt import sensor
radiometer = sensor.passive(18e9, 50)
radiometer = sensor.passive(18e9, 50, "V")
radiometer = sensor.passive([18e9,36.5e9], [50,55], ["V","H"])

	
active(frequency, theta_inc, theta=None, phi=None, polarization_inc=None, polarization=None, channel_map=None, name=None)

	Configuration for active microwave sensor.

Return a Sensor for a radar with given frequency, incidence and viewing angles and polarization

If polarizations are not specified, quad-pol is the default (VV, VH, HV and HH).
If the angle of incident radiation is not specified, backscatter will be simulated

	Parameters

	
	frequency – frequency in Hz

	theta_inc – incident angle in degrees from the vertical

	theta – viewing zenith angle in degrees from the vertical. By default, it is equal to theta_inc which corresponds
to the backscatter direction

	phi – viewing azimuth angle in degrees from the incident direction. By default, it is pi which corresponds
to the backscatter direction

	polarization_inc (list of 1-character strings) – list of polarizations of the incidence wave (‘H’ or ‘V’ or both.)

	polarization (list of 1-character strings) – list of viewing polarizations (‘H’ or ‘V’ or both)

	channel_map (dict) – map channel names (keys) to configuration (values). A configuration is a dict with frequency, polarization and other
such parameters to be used by Result to select the results.

	name (string) – name of the sensor

	Returns

	Sensor instance

Usage example:

from smrt import sensor
scatterometer = sensor.active(frequency=18e9, theta_inc=50)
scatterometer = sensor.active(18e9, 50, 50, 0, "V", "V")
scatterometer = sensor.active([18e9,36.5e9], theta=50, theta_inc=50, polarization_inc=["V", "H"], polarization=["V", "H"])

	
amsre(channel=None, frequency=None, polarization=None, theta=55)

	Configuration for AMSR-E sensor.

This function can be used to simulate all 12 AMSR-E channels i.e. frequencies of 6.925, 10.65, 18.7, 23.8, 36.5 and 89 GHz
at both polarizations H and V. Alternatively single channels can be specified with 3-character identifiers. 18 and 19 GHz can
be used interchangably to represent 18.7 GHz, similarly either 36 and 37 can be used to represent the 36.5 GHz channel.
Note that if you need both H and V polarization (at 37 GHz for instance), use channel=”37” instead of channel=[“37V”, “37H”]
as this will result in a more efficient simulation, because most rtsolvers anyway compute both polarizations in one shot.

	Parameters

	channel (3-character string) – single channel identifier

	Returns

	Sensor instance

Usage example:

from smrt import sensor
radiometer = sensor.amsre() # Simulates all channels
radiometer = sensor.amsre('36V') # Simulates 36.5 GHz channel only
radiometer = sensor.amsre('06H') # 6.925 GHz channel

	
amsr2(channel=None, frequency=None, polarization=None, theta=55)

	Configuration for AMSR-2 sensor.

This function can be used to simulate all 14 AMSR2 channels i.e. frequencies of 6.925, 10.65, 18.7, 23.8, 36.5 and 89 GHz
at both polarizations H and V. Alternatively single channels can be specified with 3-character identifiers. 18 and 19 GHz can
be used interchangably to represent 18.7 GHz, similarly either 36 and 37 can be used to represent the 36.5 GHz channel.
Note that if you need both H and V polarization (at 37 GHz for instance), use channel=”37” instead of channel=[“37V”, “37H”]
as this will result in a more efficient simulation, because most rtsolvers anyway compute both polarizations in one shot.

	Parameters

	channel (3-character string) – single channel identifier

	Returns

	Sensor instance

Usage example:

from smrt import sensor
radiometer = sensor.amsre() # Simulates all channels
radiometer = sensor.amsre('36V') # Simulates 36.5 GHz channel only
radiometer = sensor.amsre('06H') # 6.925 GHz channel

	
cimr(channel=None, frequency=None, polarization=None, theta=55)

	Configuration for AMSR-2 sensor.

This function can be used to simulate all 10 CIMR channels i.e. frequencies of 1.4, 6.9, 10.6, 18.7, 36.5 GHz
at both polarizations H and V. Alternatively single channels can be specified with 3-character identifiers. 18 and 19 GHz can
be used interchangably to represent 18.7 GHz, similarly either 36 and 37 can be used to represent the 36.5 GHz channel.
Note that if you need both H and V polarization (at 37 GHz for instance), use channel=”37” instead of channel=[“37V”, “37H”]
as this will result in a more efficient simulation, because most rtsolvers anyway compute both polarizations in one shot.

	Parameters

	channel (3-character string) – single channel identifier

	Returns

	Sensor instance

	
common_conical_pmw(sensor_name, frequency_dict, channel=None, frequency=None, polarization=None, theta=55, name=None)

	

	
quikscat(channel=None, theta=None)

	Configuration for quikscat sensor.

This function can be used to simulate the 4 QUIKSCAT channels i.e. incidence angles 46° and 54° and HH and VV polarizations.
Alternatively a subset of these channels can be specified with 4-character identifiers with polarization first .e.g. HH46, VV54

	Parameters

	channel (4-character string) – single channel identifier

	Returns

	Sensor instance

	
ascat(theta=None)

	Configuration for ASCAT on ENVISAT sensor.

This function returns a sensor at 5.255 GHz (C-band) and VV polarization. The incidence angle can be chosen or is by defaut from 25° to 65° every 5°

	Parameters

	theta (float or sequence) – incidence angle (between 25 and 65° in principle)

	Returns

	Sensor instance

	
sentinel1(theta=None)

	Configuration for C-SAR on Sentinel 1.

This function return a sensor at 5.405 GHz (C-band). The incidence angle can be chosen or is by defaut from 20 to 45° by step of 5°

	Parameters

	theta (float or sequence) – incidence angle

	Returns

	Sensor instance

	
smos(theta=None)

	Configuration for MIRAS on SMOS.

This function returns a passive sensor at 1.41 GHz (L-band). The incidence angle can be chosen or is by defaut from 0 to 60° by step of 5°

	Parameters

	theta (float or sequence) – incidence angle

	Returns

	Sensor instance

	
smap(mode, theta=40)

	Configuration for the passive (mode=P) and active (mode=A) sensor on smap

This function returns either a passive sensor at 1.4 GHz (L-band) sensor or an active sensor at 1.26 GHz. The incidence angle is 40°.

	
filter_channel_map(channel_map, channel)

	

	
extract_configuration(channel_map)

	

smrt.inputs.test_make_medium module

smrt.inputs.test_make_substrate module

smrt.inputs.test_sensor_list module

Module contents

This package includes modules to create the medium and sensor configuration required for the simulations.
The recommended way to build these objects:

from smrt import make_snowpack, sensor_list

sp = make_snowpack([1000], density=[300], microstructure_model='sticky_hard_spheres', radius=[0.3e-3], stickiness=0.2)

radiometer = sensor_list.amsre()

Note that the function make_snowpack() and the module sensor_list is directly imported from smrt, which is convenient but they effectively lie
in the package smrt.inputs. They could be imported using the full path as follows:

from smrt.inputs.make_medium import make_snowpack
from smrt.inputs import sensor_list

sp = make_snowpack([1000], density=[300], microstructure_model='sticky_hard_spheres', radius=[0.3e-3], stickiness=0.2)

radiometer = sensor_list.amsre()

Extension of the modules in the inputs package is welcome. This is as simple as adding new functions in the modules (e.g. in sensor_list) or
adding a new modules (e.g. my_make_medium.py) in this package and use the full path import.

smrt.permittivity package

Submodules

smrt.permittivity.brine module

	
brine_conductivity(temperature)

	computes ionic conductivity of dissolved salts, Stogryn and Desargant, 1985

	Parameters

	temperature – thermometric temperature [K]

	
brine_relaxation_time(temperature)

	computes relaxation time of brine, Stogryn and Desargant, 1985

	Parameters

	temperature – thermometric temperature [K]

	
static_brine_permittivity(temperature)

	computes static dielectric constant of brine, Stogryn and Desargant, 1985

	Parameters

	temperature – thermometric temperature [K]

	
calculate_brine_salinity(temperature)

	Computes the salinity of brine (in ppt) for a given temperature (Cox and Weeks, 1975)

	Parameters

	temperature – snow temperature in K

:return salinity_brine in ppt

	
permittivity_high_frequency_limit(temperature)

	computes permittivity.

	Parameters

	temperature – ice or snow temperature in K

	
brine_volume(temperature, salinity, porosity=0, bulk_density=None)

	computes brine volume fraction using coefficients from Cox and Weeks (1983): ‘Equations for determining the gas and brine volumes in sea-ice samples’,
J. of Glac. if ice temperature is below -2 deg C or coefficients determined by Lepparanta and Manninen (1988):
‘The brine and gas content of sea ice with attention to low salinities and high temperatures’ for warmer temperatures.

	Parameters

	
	temperature – ice temperature in K

	salinity – salinity of ice in kg/kg (see PSU constant in smrt module)

	porosity – fractional air volume in ice (0..1). Default is 0.

	bulk_density – density of bulk ice in kg m -3

	
calculate_freezing_temperature(salinity)

	calculates temperature at which saline water freezes using polynomial fits
of the Gibbs function given in TEOS-10: The international thermodynamic equation
of seawater - 2010 (’http://www.teos-10.org/pubs/TEOS-10_Manual.pdf).
The error of this fit ranges between -5e-4 K and 6e-4 K when compared with the
temperature calculated from the exact in-situ freezing temperature, which is found
by a Newton-Raphson iteration of the equality of the chemical potentials of water
in seawater and in ice.

	Parameters

	salinity – salinity of ice in kg/kg (see PSU constant in smrt module)

smrt.permittivity.generic_mixing_formula module

This module contains functions that are not tied to a particular electromagnetic model
and are available to be imported by any electromagnetic model. It is the responsibility of the
developer to ensure these functions, if used, are appropriate and consistent with the physics of the electromagnetic model.

	
depolarization_factors(length_ratio=None)

	Calculates depolarization factors for use in effective permittivity models. These
are a measure of the anisotropy of the snow. Default is spherical isotropy.

	Parameters

	length_ratio – [Optional] ratio of microstructure length measurement in x/y direction to z-direction [unitless].

	Returns

	[x, y, z] depolarization factor array

Usage example:

from smrt.permittivity.generic_mixing_formula import depolarization_factors
depol_xyz = depolarization_factors(length_ratio=1.2)
depol_xyz = depolarization_factors()

	
polder_van_santen(frac_volume, e0=1, eps=3.185, depol_xyz=None, length_ratio=None, inclusion_shape=None, mixing_ratio=1)

	Calculates effective permittivity of snow by solution of quadratic Polder Van Santen equation for spherical inclusion.

	Parameters

	
	frac_volume – Fractional volume of inclusions

	e0 – Permittivity of background (default is 1)

	eps – Permittivity of scattering material (default is 3.185 to compare with MEMLS)

	depol_xyz – [Optional] Depolarization factors, spherical isotropy is default. It is not taken into account here.

	length_ratio – Length_ratio. Used to estimate depolarization factors when they are not given.

	inclusion_shape – Assumption for shape(s) of brine inclusions. Can be a string for single shape, or a list/tuple/dict of strings for mixture of shapes. So far, we have the following shapes: “spheres” and “random_needles” (i.e. randomly-oriented elongated ellipsoidal inclusions).
If the argument is a dict, the keys are the shapes and the values are the mixing ratio. If it is a list, the mixing_ratio argument is required.

	mixing_ratio – The mixing ratio of the shapes. This is only relevant when inclusion_shape is a list/tuple. Mixing ratio must be a sequence with length len(inclusion_shape)-1. The mixing ratio of the last shapes is deduced as the sum of the ratios must equal to 1.

	Returns

	Effective permittivity

Usage example:

from smrt.permittivity.generic_mixing_formula import polder_van_santen
effective_permittivity = polder_van_santen(frac_volume, e0, eps)

for a mixture of 30% spheres and 70% needles
effective_permittivity = polder_van_santen(frac_volume, e0, eps, inclusion_shape={"spheres": 0.3, "random_needles": 0.7})
or
effective_permittivity = polder_van_santen(frac_volume, e0, eps, inclusion_shape=("spheres", "random_needles"), mixing_ratio=0.3)

Todo

Extend Polder Van Santen model to account for ellipsoidal inclusions

	
bruggeman(frac_volume, e0=1, eps=3.185, depol_xyz=None, length_ratio=None, inclusion_shape=None, mixing_ratio=1)

	Calculates effective permittivity of snow by solution of quadratic Polder Van Santen equation for spherical inclusion.

	Parameters

	
	frac_volume – Fractional volume of inclusions

	e0 – Permittivity of background (default is 1)

	eps – Permittivity of scattering material (default is 3.185 to compare with MEMLS)

	depol_xyz – [Optional] Depolarization factors, spherical isotropy is default. It is not taken into account here.

	length_ratio – Length_ratio. Used to estimate depolarization factors when they are not given.

	inclusion_shape – Assumption for shape(s) of brine inclusions. Can be a string for single shape, or a list/tuple/dict of strings for mixture of shapes. So far, we have the following shapes: “spheres” and “random_needles” (i.e. randomly-oriented elongated ellipsoidal inclusions).
If the argument is a dict, the keys are the shapes and the values are the mixing ratio. If it is a list, the mixing_ratio argument is required.

	mixing_ratio – The mixing ratio of the shapes. This is only relevant when inclusion_shape is a list/tuple. Mixing ratio must be a sequence with length len(inclusion_shape)-1. The mixing ratio of the last shapes is deduced as the sum of the ratios must equal to 1.

	Returns

	Effective permittivity

Usage example:

from smrt.permittivity.generic_mixing_formula import polder_van_santen
effective_permittivity = polder_van_santen(frac_volume, e0, eps)

for a mixture of 30% spheres and 70% needles
effective_permittivity = polder_van_santen(frac_volume, e0, eps, inclusion_shape={"spheres": 0.3, "random_needles": 0.7})
or
effective_permittivity = polder_van_santen(frac_volume, e0, eps, inclusion_shape=("spheres", "random_needles"), mixing_ratio=0.3)

Todo

Extend Polder Van Santen model to account for ellipsoidal inclusions

	
polder_van_santen_three_spherical_components(f1, f2, eps0, eps1, eps2)

	Calculates effective permittivity using Polder and van Santen with three components assuming spherical inclusions

	Parameters

	
	f1 – fractional volume of component 1

	f2 – fractional volume of component 2

	eps0 – permittivity of material 0

	eps1 – permittivity of material 1

	eps2 – permittivity of material 2

	
polder_van_santen_three_components(f1, f2, eps0, eps1, eps2, A1, A2)

	Calculates effective permittivity using Polder and van Santen with three components

	Parameters

	
	f1 – fractional volume of component 1

	f2 – fractional volume of component 2

	eps0 – permittivity of material 0

	eps1 – permittivity of material 1

	eps2 – permittivity of material 2

	A1 – depolarization factor for material 1

	A2 – depolarization factor for material 2

	
maxwell_garnett(frac_volume, e0, eps, depol_xyz=None, inclusion_shape=None, length_ratio=None)

	Calculates effective permittivity using Maxwell-Garnett equation.

	Parameters

	
	frac_volume – Fractional volume of snow

	e0 – Permittivity of background (no default, must be provided)

	eps – Permittivity of scattering material (no default, must be provided)

	depol_xyz – [Optional] Depolarization factors, spherical isotropy is default. It is not taken into account here.

	length_ratio – Length_ratio. Used to estimate depolarization factors when they are not given.

	inclusion_shape – Assumption for shape(s) of brine inclusions. Can be a string for single shape, or a list/tuple/dict of strings for mixture of shapes. So far, we have the following shapes: “spheres” and “random_needles” (i.e. randomly-oriented elongated ellipsoidal inclusions).
If the argument is a dict, the keys are the shapes and the values are the mixing ratio. If it is a list, the mixing_ratio argument is required.

	Returns

	random orientation effective permittivity

Usage example:

If used by electromagnetic model module:
from .commonfunc import maxwell_garnett
effective_permittivity = maxwell_garnett(frac_volume=0.2,
 e0=1,
 eps=3.185,
 depol_xyz=[0.3, 0.3, 0.4])

If accessed from elsewhere, use absolute import
from smrt.emmodel.commonfunc import maxwell_garnett

	
maxwell_garnett_for_spheres(frac_volume, e0, eps)

	Calculates effective permittivity using Maxwell-Garnett equation assuming spherical inclusion. This function is essentially an
optimized version of py:func:maxwell_garnett.

smrt.permittivity.ice module

	
ice_permittivity_maetzler06(frequency, temperature)

	Calculates the complex ice dielectric constant depending on the frequency and temperature

Based on Mätzler, C. (2006). Thermal Microwave Radiation: Applications for Remote Sensing p456-461
This is the default model used in smrt.inputs.make_medium.make_snow_layer().

	Parameters

	
	frequency – frequency in Hz

	temperature – temperature in K

	Returns

	Complex permittivity of pure ice

Usage example:

from smrt.permittivity.ice import ice_permittivity_maetzler06
eps_ice = ice_permittivity_maetzler06(frequency=18e9, temperature=270)

Note

Ice permittivity is automatically calculated in smrt.inputs.make_medium.make_snow_layer() and
is not set by the electromagnetic model module. An alternative
to ice_permittivity_maetzler06 may be specified as an argument to the make_snow_layer
function. The usage example is provided for external reference or testing purposes.

	
ice_permittivity_maetzler98(frequency, temperature)

	computes permittivity of ice (accounting for ionic impurities in ice?), equations from Hufford (1991) as given in Maetzler (1998): ‘Microwave properties of ice and snow’, in B. Schmitt et al. (eds.): ‘Solar system ices’, p. 241-257, Kluwer.

	Parameters

	
	temperature – ice temperature in K

	frequency – Frequency in Hz

	
ice_permittivity_maetzler87(frequency, temperature)

	Calculates the complex ice dielectric constant depending on the frequency and temperature

Based on Mätzler, C. and Wegmüller (1987). Dielectric properties of fresh-water ice at microwave frequencies.
J. Phys. D: Appl. Phys. 20 (1987) 1623-1630.

	Parameters

	
	frequency – frequency in Hz

	temperature – temperature in K

	Returns

	Complex permittivity of pure ice

Usage example:

from smrt.permittivity.ice import ice_permittivity_maetzler87
eps_ice = ice_permittivity_maetzler87(frequency=18e9, temperature=270)

Note

This is only suitable for testing at -5 deg C and -15 deg C. If used at other temperatures
a warning will be displayed.

	
ice_permittivity_tiuri84(frequency, temperature)

	Calculates the complex ice dielectric constant depending on the frequency and temperature

Based on Tiuri et al. (1984). The Complex Dielectric Constant of Snow at Microwave Frequencies.
IEEE Journal of Oceanic Engineering, vol. 9, no. 5., pp. 377-382

	Parameters

	
	frequency – frequency in Hz

	temperature – temperature in K

	Returns

	Complex permittivity of pure ice

Usage example:

from smrt.permittivity.ice import ice_permittivity_tiuri84
eps_ice = ice_permittivity_tiuri84(frequency=1.9e9, temperature=250)

	
_ice_permittivity_HUT(frequency, temperature)

	

	
_ice_permittivity_DMRTML(frequency, temperature)

	

	
_ice_permittivity_MEMLS(frequency, temperature, salinity)

	

smrt.permittivity.saline_ice module

	
impure_ice_permittivity_maetzler06(frequency, temperature, salinity)

	
	Computes permittivity of impure ice from Maetzler 2006 - Thermal Microwave Radiation: Applications for Remote Sensing.

	Model developed for salinity around 0.013 PSU. The extrapolation is based on linear assumption to salinity, so it is not recommended for much higher salinity.

	param temperature

	ice temperature in K

	param salinity

	salinity of ice in kg/kg (see PSU constant in smrt module)

Usage example:

from smrt.permittivity.saline_ice import impure_ice_permittivity_maetzler06
eps_ice = impure_ice_permittivity_maetzler06(frequency=18e9, temperature=270, salinity=0.013)

	
saline_ice_permittivity_pvs_mixing(frequency, temperature, brine_volume_fraction, brine_inclusion_shape='spheres', brine_mixing_ratio=1, ice_permittivity_model=None, brine_permittivity_model=None)

	Computes effective permittivity of saline ice using the Polder Van Santen mixing formulaes.

	Parameters

	
	frequency – frequency in Hz

	temperature – ice temperature in K

	brine_volume_fraction – brine / liquid water fraction in sea ice

	brine_inclusion_shape – Assumption for shape(s) of brine inclusions. Can be a string for single shape, or a list/tuple/dict of strings for mixture of shapes. So far, we have the following shapes: “spheres” and “random_needles” (i.e. randomly-oriented elongated ellipsoidal inclusions).
If the argument is a dict, the keys are the shapes and the values are the mixing ratio. If it is a list, the mixing_ratio argument is required.

	brine_mixing_ratio – The mixing ratio of the shapes. This is only relevant when inclusion_shape is a list/tuple. Mixing ratio must be a sequence with length len(inclusion_shape)-1. The mixing ratio of the last shapes is deduced as the sum of the ratios must equal to 1.

	ice_permittivity_model – pure ice permittivity formulation (default is ice_permittivity_matzler87)

	brine_permittivity_model – brine permittivity formulation (default is brine_permittivity_stogryn85)

smrt.permittivity.saline_snow module

	
saline_snow_permittivity_geldsetzer09(frequency, density, temperature, salinity)

	Computes permittivity of saline snow using the frequency dispersion model published by Geldsetzer et al., 2009 (CRST). DOI: 10.1016/j.coldregions.2009.03.009.
In-situ measurements collected had salinity concentration between 0.1e-3 and 12e3 kg/kg, temperatures ranging between 257 and 273 K, and a mean snow density of 352 kg/m3.

Validity between 10 MHz and 40 GHz.

Source: Matlab code, Ludovic Brucker

	Parameters

	
	frequency – frequency in Hz

	density – snow density in kg m-3

	temperature – ice temperature in K

	salinity – salinity of ice in kg/kg (see PSU constant in smrt module)

	
saline_snow_permittivity_scharien_with_stogryn71(frequency, density, temperature, salinity)

	Computes permittivity of saline snow. See saline_snow_permittivity_scharien documentation

	
saline_snow_permittivity_scharien_with_stogryn95(frequency, density, temperature, salinity)

	Computes permittivity of saline snow. See saline_snow_permittivity_scharien documentation

	
saline_snow_permittivity_scharien(density, temperature, salinity, brine_permittivity)

	Computes permittivity of saline snow using the Denoth / Matzler Mixture Model - Dielectric Contsant of Saline Snow.

Assumptions:
(1) Brine inclusion geometry as oblate spheroids

Depolarization factor, A0 = 0.053 (Denoth, 1980)

	Brine inclusions are isotropically oriented
Coupling factor, X = 2/3 (Drinkwater and Crocker, 1988)

Validity ranges:

	Temperature, Ts, down to - 22.9 degrees Celcius;

(2) Brine salinity, Sb, up to 157ppt; i.e.up to a Normality of 3 for NaCl
Not valid for wet snow

Source: Matlab code, Randall Scharien

	Parameters

	
	density – snow density in kg m-3

	temperature – snow temperature in K

	salinity – snow salinity in kg/kg (see PSU constant in smrt module)

	brine_permittivity – brine_permittivity

smrt.permittivity.saline_water module

	
seawater_permittivity_klein76(frequency, temperature, salinity)

	Calculates permittivity (dielectric constant) of water using an empirical relationship described
by Klein and Swift (1976).

	Parameters

	
	frequency – frequency in Hz

	temperature – water temperature in K

	salinity – water salinity in kg/kg (see PSU constant in smrt module)

Returns complex water permittivity for a frequency f.

	
seawater_permittivity_stogryn71(frequency, temperature)

	Computes dielectric constant of brine, complex_b (Stogryn, 1971 approach)

Input parameters: from polynomial fit in Stogryn and Desargent, 1985

Source: Matlab code, Ludovic Brucker

	Parameters

	
	frequency – frequency in Hz

	temperature – water temperature in K

Returns complex water permittivity for a frequency f.

	
brine_permittivity_stogryn85(frequency, temperature)

	computes permittivity and loss of brine using equations given in Stogryn and Desargant (1985): ‘The Dielectric Properties of Brine in Sea Ice at Microwave Frequencies’, IEEE.

	Parameters

	
	frequency – em frequency [Hz]

	temperature – ice temperature in K

	
seawater_permittivity_stogryn95(frequency, temperature, salinity)

	Computes seawater dielectric constant using Stogryn 1995.

source: Stogryn 1995 + http://rime.aos.wisc.edu/MW/models/src/eps_sea_stogryn.f90; Matlab code, Ludovic Brucker

	Parameters

	
	frequency – frequency in Hz

	temperature – water temperature in K

	salinity – water salinity in kg/kg (see PSU constant in smrt module)

Returns complex water permittivity for a frequency f.

smrt.permittivity.snow_mixing_formula module

Mixing formulae relevant to snow. This module contains equations to compute the effective permittivity of snow.

Note that by default most emmodels (IBA, DMRT, SFT Rayleigh) uses the generic mixing formula Polder van Staten that mixes the permittivities
of the background (e.g.) and the scatterer materials (e.g. ice) to compute the effective permittivity of snow in a proportion
determined by frac_volume. See py:meth:~smrt.emmolde.derived_IBA.

Many semi-empirical mixing formulae have been developed for specific mixture of materials (e.g. snow). They can be used to replace
the Polder van Staten in the EM models. They should not be used to set the material permittivities
as input of py:meth:~smrt.smrt_inputs.make_snowpack and similar functions (because the emmodel would re-mix
the already mixed materials with the background material).

	
wetsnow_permittivity_tinga73(frequency, temperature, density, liquid_water, ice_permittivity_model=None, water_permittivity_model=None)

	
	effective permittivity proposed by Tinga et al. 1973 for three-component mixing. The component 1 is the background (“a” here),

	the compoment 2 (“w” here) is a spherical shell surrounding the component 3 (“i” here).

It was used by Tiuri as well as T. Mote to compute wet snolw permittivity.

Tinga, W.R., Voss, W.A.G. and Blossey, D. F.: General approach to multiphase dielectric mixture theory.
Journal of Applied Physics, Vol.44(1973) No.9,pp.3897-3902.
doi: /10.1063/1.1662868

Tiuri, M. and Schultz, H., Theoretical and experimental studies of microwave radiation from a natural snow field. In Rango, A. , ed.
Microwave remote sensing of snowpack properties. Proceedings of a workshop … Fort Collins, Colorado, May 20-22, 1980.
Washington, DC, National Aeronautics and Space Center, 225-234. (Conference Publication 2153.)

	
compute_frac_volumes(density, liquid_water)

	compute the fractional volume of ice+water, the fractional volume of ice, and the fractional volume of water
from the (wet) snow density and the liquid_water which is the volume fraction of liquid with respect to ice + liquid (but no air).

	Parameters

	
	density – density of the snow, including the ice and water phases.

	liquid_water – (fractional volume of water with respect to ice+water volume).

	Returns

	frac_volume, fi, fw

	
wetsnow_permittivity_colbeck80_caseI(frequency, temperature, density, liquid_water, ice_permittivity_model=None, water_permittivity_model=None)

	effective permittivity proposed by Colbeck, 1980 for the pendular regime.

Colbeck, S. C. (1980). Liquid distribution and the dielectric constant of wet snow.
Goddard Space Flight Center Microwave Remote Sensing of Snowpack Properties, 21–40.

	
wetsnow_permittivity_colbeck80_caseII(frequency, temperature, density, liquid_water, ice_permittivity_model=None, water_permittivity_model=None)

	effective permittivity proposed by Colbeck, 1980 for the funicular regime and low dry snow density.

Colbeck, S. C. (1980). Liquid distribution and the dielectric constant of wet snow.
Goddard Space Flight Center Microwave Remote Sensing of Snowpack Properties, 21–40.

	
wetsnow_permittivity_hallikainen86(frequency, density, liquid_water)

	effective permittivity of a snow mixture calculated with the Modified Debye model by Hallikainen 1986

The implemented equation are 10, 11 and 13a-c.

	The validity of the model is: frequency between 3 and 37GHz;

	mv between 1% and 12%;
dry_snow_density between 0.09 and 0.38g/cm3.

The implementation of this function follows the equations formulation of the original paper
Hallikainen, M., F. Ulaby, and M. Abdelrazik, “Dielectric properties of snow in 3 to 37 GHz range,”
IEEE Trans. on Antennasand Propagation,Vol. 34, No. 11, 1329–1340, 1986. DOI: 10.1109/TAP.1986.1143757
Anyway this formulation does not allow the reproduction of the results as reported in the paper.
A new formulation of eq. 12a have been presented in the book
Microwave Radar and Radiometric Remote Sensing by Ulaby et al. 2014 from which the SMRT function
wetsnow_permittivity_hallikainen86_ulaby14 have been implemented. The users are pointed to that definition.

	
wetsnow_permittivity_hallikainen86_ulaby14(frequency, density, liquid_water)

	effective permittivity of a snow mixture calculated with the Modified Debye model by Hallikainen 1986
and revised in Microwave Radar and Radiometric Remote Sensing by Ulaby et al. 2014
Equations implemented are ch 4 pp 143-15 4.60a - 4.61h.

	The validity of the model is: frequency between 3 and 37GHz;

	mv between 1% and 12%;
dry_snow_density between 0.09 and 0.38g/cm3.

Same formulation can be reproduced by the book code https://mrs.eecs.umich.edu/codes/Module4_6/Module4_6.html

	
wetsnow_permittivity_wiesmann99(frequency, temperature, density, liquid_water, ice_permittivity_model=None)

	effective permittivity of a snow mixture as presented in MEMLS by Wiesmann and Matzler, 1999. Note that the version implemented
in MEMLS v3 is different.

	
wetsnow_permittivity_memls(frequency, temperature, density, liquid_water, ice_permittivity_model=None, water_permittivity_model=None)

	effective permittivity of a snow mixture as calculated in MEMLS using Maxwell-Garnett Mixing rule of water in dry snow
for prolate spheroidal water with experimentally determined. Dry snow permittivity is here determined with Polder van Santen.

	
wetsnow_permittivity_three_component_polder_van_santen(frequency, temperature, density, liquid_water, ice_permittivity_model=None, water_permittivity_model=None)

	effective permittivity of a snow mixture using the three components polder_van_santen, assuming spherical inclusions

	
depolarization_factors_maetzler96(density)

	
	The empirical depolarization factors of snow estimated by Mäzler 1996. It is supposed to provide more accurate

	permittivity=f(density) than using constant depolarization factors in Polder van Santen (e.g. spheres)

Biblio: C. Mäzler, Microwave Permittivity of dry snow, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 34, NO. 2, MARCH 1996

	
drysnow_permittivity_maetzler96(density, e0=1, eps=3.185)

	

	
default_ice_water_permittivity(ice_permittivity_model, water_permittivity_model)

	

smrt.permittivity.test_generic_mixing_formula module

smrt.permittivity.test_ice module

smrt.permittivity.test_saline_ice module

smrt.permittivity.test_snow_mixing_formula module

smrt.permittivity.water module

	
water_permittivity_maetzler87(frequency, temperature)

	Calculates the complex water dielectric constant depending on the frequency and temperature
Based on Mätzler, C., & Wegmuller, U. (1987). Dielectric properties of freshwater
ice at microwave frequencies. Journal of Physics D: Applied Physics, 20(12), 1623-1630.

	Parameters

	
	frequency – frequency in Hz

	temperature – temperature in K

	Raises

	Exception – if liquid water > 0 or salinity > 0 (model unsuitable)

	Returns

	Complex permittivity of pure ice

	
water_permittivity(frequency, temperature)

	Calculates the complex water dielectric constant depending on the frequency and temperature
Based on Mätzler, C., & Wegmuller, U. (1987). Dielectric properties of freshwater
ice at microwave frequencies. Journal of Physics D: Applied Physics, 20(12), 1623-1630.

	Parameters

	
	frequency – frequency in Hz

	temperature – temperature in K

	Raises

	Exception – if liquid water > 0 or salinity > 0 (model unsuitable)

	Returns

	Complex permittivity of pure ice

	
water_permittivity_tiuri80(frequency, temperature)

	Calculates the complex water dielectric constant reported by:

Tiuri, M. and Schultz, H., Theoretical and experimental studies of microwave radiation from a natural snow field. In Rango, A. , ed.

Microwave remote sensing of snowpack properties. Proceedings of a workshop … Fort Collins, Colorado, May 20-22, 1980.
Washington, DC, National Aeronautics and Space Center, 225-234. (Conference Publication 2153.)

https://ntrs.nasa.gov/api/citations/19810010984/downloads/19810010984.pdf

smrt.permittivity.wetice module

	
wetice_permittivity_bohren83(frequency, temperature, liquid_water)

	calculate the dielectric constant of wet particules of ice using Maxwell Garnet equation using water as the background and
ice as the inclusions. As reported by Bohren and Huffman 1983 according to Ya Qi Jin, eq 8-69, 1996 p282

see also: K L CHOPRA and G B REDDY, Praman.a- Optically selective coatings, J. Phys., Vol. 27, Nos 1 & 2, July & August 1986, pp. 193-217.

	Parameters

	
	frequency – frequency in Hz

	temperature – temperature in K

:param liquid_water (fractional volume of water with respect to ice+water volume).
:returns: Complex permittivity of pure ice

	
symmetric_wetice_permittivity(frequency, temperature, liquid_water)

	calculate the dielectric constant of wet particules of ice using Polder van Santen Maxwell equation
assuming both ice and water are fully mixed. This applies to intermediate content of wetness. Typically liquid_water=0.5.

	Parameters

	
	frequency – frequency in Hz

	temperature – temperature in K

:param liquid_water (fractional volume of water with respect to ice+water volume).
:returns: Complex permittivity of pure ice

smrt.permittivity.wetsnow module

	
wetsnow_permittivity(frequency, temperature, liquid_water)

	calculate the dielectric constant of wet particule of ice using Bohren and Huffman 1983 according to Ya Qi Jin, eq 8-69, 1996 p282

	Parameters

	
	frequency – frequency in Hz

	temperature – temperature in K

:param liquid_water (fractional volume of water with respect to ice+water volume)
:returns: Complex permittivity of pure ice

Module contents

This module contains permittivity formulations for different materials. They are organised in different files for easy access but this is
not strictly required.

E.g. ice.py contains formulation for pure ice permittivity.

For developers

To add a new permittivity function proceed as follows:

1. To add a new permittivity formulation add a function either in an existing file or
in a new file (recommended for testing). E.g. for salty ice permittivity formulations should be in saltyice.py and so on.

2. Any function defining a permittivity model must declare the mapping
between the layer properties and the arguments of the function (see ice.py for examples).
It means that the arguments of the function must be listed (in order) in the @required_layer_properties
decorator. In most cases, the name of the arguments should be the same as a properties, but
this is not strictly necessary, only the order matters. E.g.:

@required_layer_properties("temperature", "salinity")
def permittivity_something(frequency, t, s):

maps the layer property “temperature” to the argument “t” of the function (and “salinity” to s)
However, we recommend to change t into temperature for sake of clarity.

For curious ones, this declaration is required because the function can be called either with its arguments (normal case)
or with only two arguments like this (frequency, layer). In this latter case, the arguments required by the original function
are automatically extracted from the layer attributes (=properties) based on the declaration in @required_layer_properties.
This complication is necessary because there is no way in Python to inspect the name of the arguments of
a function, so the need for explicit declaration.

3. to use the new function, import the module (e.g. from smrt.permittivity.ice import permittivity_something) and
pass this function to smrt.core.snowpack.make_snowpack() or smrt.core.layer:make_snow_layer().

smrt.microstructure_model package

Submodules

smrt.microstructure_model.autocorrelation module

This module contains the base classes for the microstructure classes.
It is not used directly.

	
class AutocorrelationBase(params)

	Bases: object

Low level base class for the Autocorrelation base class to handle optional and required arguments.
It should not be used directly.

	
__init__(params)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod compute_all_arguments()

	

	
classmethod valid_arguments()

	

	
__dict__ = mappingproxy({'__module__': 'smrt.microstructure_model.autocorrelation', '__doc__': 'Low level base class for the Autocorrelation base class to handle optional and required arguments.\n **It should not be used directly**.\n\n', '__init__': <function AutocorrelationBase.__init__>, 'compute_all_arguments': <classmethod object>, 'valid_arguments': <classmethod object>, '__dict__': <attribute '__dict__' of 'AutocorrelationBase' objects>, '__weakref__': <attribute '__weakref__' of 'AutocorrelationBase' objects>})

	

	
__doc__ = 'Low level base class for the Autocorrelation base class to handle optional and required arguments.\n **It should not be used directly**.\n\n'

	

	
__module__ = 'smrt.microstructure_model.autocorrelation'

	

	
__weakref__

	list of weak references to the object (if defined)

	
class Autocorrelation(params)

	Bases: smrt.microstructure_model.autocorrelation.AutocorrelationBase

Base class for autocorrelation function classes. It should not be
used directly but sub-classed. It provides generic handling of the numerical fft and invfft when
required by the user or when necessary due to the lack of implementation of
the real or ft autocorrelation functions. See the source of Exponential
to see how to use this class.

	
args = []

	

	
optional_args = {'ft_numerical': False, 'real_numerical': False}

	

	
__init__(params)

	Initialize self. See help(type(self)) for accurate signature.

	
ft_autocorrelation_function_fft(k)

	compute the fourier transform of the autocorrelation function via fft
Args:
k: array of wave vector magnitude values, ordered, and non-negative

	
autocorrelation_function_invfft(r)

	Compute the autocorrelation function from an analytically known FT via fft
Args:
r: array of lag vector magnitude values, ordered, non-negative

	
inverted_medium()

	return the same autocorrelation for the inverted medium. In general, it is only necessary to invert the fractional volume if
the autocorrelation function is numerically symmetric as it should be. This needs to be reimplemented in the sub classes if this is
not sufficient.

	
__doc__ = 'Base class for autocorrelation function classes. It should not be\nused directly but sub-classed. It provides generic handling of the numerical fft and invfft when\nrequired by the user or when necessary due to the lack of implementation of\nthe real or ft autocorrelation functions. See the source of :py:class:`~smrt.microstructure_model.exponential.Exponential`\nto see how to use this class.\n\n '

	

	
__module__ = 'smrt.microstructure_model.autocorrelation'

	

smrt.microstructure_model.exponential module

Exponential autocorrelation function model of the microstructure. This microstructure model is used by MEMLS when IBA is selected.

parameters: frac_volume, corr_length

	
class Exponential(params)

	Bases: smrt.microstructure_model.autocorrelation.Autocorrelation

	
args = ['frac_volume', 'corr_length']

	

	
optional_args = {}

	

	
__init__(params)

	Initialize self. See help(type(self)) for accurate signature.

	
corr_func_at_origin

	

	
inv_slope_at_origin

	

	
basic_check()

	check consistency between the parameters

	
compute_ssa()

	compute the ssa for the exponential model according to Debye 1957. See also Maetzler 2002 Eq. 11

	
autocorrelation_function(r)

	compute the real space autocorrelation function

	
ft_autocorrelation_function(k)

	compute the fourier transform of the autocorrelation function analytically

	
__doc__ = None

	

	
__module__ = 'smrt.microstructure_model.exponential'

	

smrt.microstructure_model.gaussian_random_field module

Gaussian Random field model of the microstructure.

parameters: frac_volume, corr_length, repeat_distance

	
class GaussianRandomField(params)

	Bases: smrt.microstructure_model.autocorrelation.Autocorrelation

	
args = ['frac_volume', 'corr_length', 'repeat_distance']

	

	
optional_args = {}

	

	
__init__(params)

	Initialize self. See help(type(self)) for accurate signature.

	
corr_func_at_origin

	

	
inv_slope_at_origin

	

	
basic_check()

	check consistency between the parameters

	
compute_ssa()

	Compute the ssa for a sphere

	
autocorrelation_function(r)

	compute the real space autocorrelation function for the Gaussian random field model

	
__doc__ = '\n '

	

	
__module__ = 'smrt.microstructure_model.gaussian_random_field'

	

smrt.microstructure_model.homogeneous module

Homogeneous microstructure. This microstructure model is to be used with non-scattering emmodel.

parameters: none

	
class Homogeneous(params)

	Bases: smrt.microstructure_model.autocorrelation.Autocorrelation

	
args = ['frac_volume']

	

	
optional_args = {}

	

	
__init__(params)

	Initialize self. See help(type(self)) for accurate signature.

	
corr_func_at_origin

	

	
inv_slope_at_origin

	

	
basic_check()

	check consistency between the parameters

	
compute_ssa()

	compute the ssa of an homogeneous medium

	
autocorrelation_function(r)

	compute the real space autocorrelation function

	
ft_autocorrelation_function(k)

	compute the fourier transform of the autocorrelation function analytically

	
__doc__ = None

	

	
__module__ = 'smrt.microstructure_model.homogeneous'

	

smrt.microstructure_model.independent_sphere module

Independent sphere model of the microstructure.

parameters: frac_volume, radius

	
class IndependentSphere(params)

	Bases: smrt.microstructure_model.autocorrelation.Autocorrelation

	
args = ['frac_volume', 'radius']

	

	
optional_args = {}

	

	
__init__(params)

	Initialize self. See help(type(self)) for accurate signature.

	
corr_func_at_origin

	

	
inv_slope_at_origin

	

	
basic_check()

	check consistency between the parameters

	
compute_ssa()

	Compute the ssa for a sphere

	
autocorrelation_function(r)

	compute the real space autocorrelation function for an independent sphere

	
ft_autocorrelation_function(k)

	Compute the 3D Fourier transform of the isotropic correlation
function for an independent sphere for given magnitude k of the 3D wave vector
(float).

	
__doc__ = None

	

	
__module__ = 'smrt.microstructure_model.independent_sphere'

	

smrt.microstructure_model.sampled_autocorrelation module

Sampled autocorrelation function model. To use when no analytical form of the autocorrelation function but
the values of the autocorrelation function (acf) is known at a series of lag.

parameters: frac_volume, lag, acf

acf contains the values at different lag. These parameters must be lists or arrays.

	
class SampledAutocorrelation(params)

	Bases: smrt.microstructure_model.autocorrelation.Autocorrelation

	
args = ['frac_volume', 'lag', 'acf']

	

	
optional_args = {}

	

	
__init__(params)

	Initialize self. See help(type(self)) for accurate signature.

	
corr_func_at_origin

	

	
basic_check()

	check consistency between the parameters

	
compute_ssa()

	compute the ssa according to Debye 1957. See also Maetzler 2002 Eq. 11

	
autocorrelation_function(r)

	compute the real space autocorrelation function by interpolation of requested values from known values

	
__doc__ = None

	

	
__module__ = 'smrt.microstructure_model.sampled_autocorrelation'

	

smrt.microstructure_model.sticky_hard_spheres module

Monodisperse sticky hard sphere model of the microstructure.

parameters: frac_volume, radius, stickiness.

The stickiness is optional but it is recommended to use value around 0.2 as a first guess.
Be aware that low values of stickiness are invalid, the limit depends on the fractional volume
(see for instance Loewe and Picard, 2015). See the tau_min() method.

Currently the implementation is specific to ice / snow. It can not be used for other materials.

	
class StickyHardSpheres(params)

	Bases: smrt.microstructure_model.autocorrelation.Autocorrelation

	
args = ['frac_volume', 'radius']

	

	
optional_args = {'stickiness': 1000}

	

	
__init__(params)

	Initialize self. See help(type(self)) for accurate signature.

	
corr_func_at_origin

	

	
inv_slope_at_origin

	

	
basic_check()

	check consistency between the parameters

	
compute_ssa()

	Compute the ssa of a sphere assembly

	
ft_autocorrelation_function(k)

	Compute the 3D Fourier transform of the isotropic correlation
function for sticky hard spheres in Percus–Yevick
approximation for given magnitude k of the 3D wave vector
(float).

	
compute_t()

	compute the t parameter used in the stickiness

	
tau_min(frac_volume)

	compute the minimum possible stickiness value for given ice volume
fraction

	
__doc__ = '\n '

	

	
__module__ = 'smrt.microstructure_model.sticky_hard_spheres'

	

smrt.microstructure_model.test_autocorrelation module

smrt.microstructure_model.test_exponential module

smrt.microstructure_model.test_sticky_hard_spheres module

smrt.microstructure_model.teubner_strey module

Teubner Strey model model of the microstructure.

parameters: frac_volume, corr_length, repeat_distance

	
class TeubnerStrey(params)

	Bases: smrt.microstructure_model.autocorrelation.Autocorrelation

	
args = ['frac_volume', 'corr_length', 'repeat_distance']

	

	
optional_args = {}

	

	
__init__(params)

	Initialize self. See help(type(self)) for accurate signature.

	
corr_func_at_origin

	

	
basic_check()

	check consistency between the parameters

	
compute_ssa()

	Compute the ssa for a sphere

	
autocorrelation_function(r)

	compute the real space autocorrelation function for the Teubner Strey model

	
ft_autocorrelation_function(k)

	Compute the 3D Fourier transform of the isotropic correlation
function for Teubner Strey for given magnitude k of the 3D wave vector
(float).

	
__doc__ = '\n '

	

	
__module__ = 'smrt.microstructure_model.teubner_strey'

	

smrt.microstructure_model.unified_autocorrelation module

	
class UnifiedAutocorrelation(params)

	Bases: smrt.microstructure_model.autocorrelation.Autocorrelation

	
args = ['frac_volume', 'porod_length', 'polydispersity']

	

	
optional_args = {}

	

	
compute_ssa()

	compute the ssa for the given porod_length

	
__doc__ = None

	

	
__module__ = 'smrt.microstructure_model.unified_autocorrelation'

	

smrt.microstructure_model.unified_scaled_exponential module

Scaled exponential autocorrelation function model of the microstructure. This microstructure uses unified parameters as defined by
G. Picard, H. Löwe, F. Domine, L. Arnaud, F. Larue, V. Favier, E. Le Meur, E. Lefebvre, J. Savarino, A. Royer, The snow microstructural control on microwave scattering, AGU Advances.

parameters: frac_volume, porod_length, polydispersity

	
class UnifiedScaledExponential(params)

	Bases: smrt.microstructure_model.unified_autocorrelation.UnifiedAutocorrelation

	
__init__(params)

	Initialize self. See help(type(self)) for accurate signature.

	
autocorrelation_function(r)

	compute the real space autocorrelation function

	
ft_autocorrelation_function(k)

	compute the fourier transform of the autocorrelation function analytically

	
__doc__ = None

	

	
__module__ = 'smrt.microstructure_model.unified_scaled_exponential'

	

smrt.microstructure_model.unified_sticky_hard_spheres module

Monodisperse sticky hard sphere model of the microstructure. This microstructure uses unified parameters as defined by
G. Picard, H. Löwe, F. Domine, L. Arnaud, F. Larue, V. Favier, E. Le Meur, E. Lefebvre, J. Savarino, A. Royer, The snow microstructural control on microwave scattering, AGU Advances.

parameters: frac_volume, porod_length, polydispersity

	
class UnifiedStickyHardSpheres(params)

	Bases: smrt.microstructure_model.unified_autocorrelation.UnifiedAutocorrelation

	
__init__(params)

	Initialize self. See help(type(self)) for accurate signature.

	
basic_check()

	check consistency between the parameters

	
compute_stickiness()

	

	
ft_autocorrelation_function(k)

	Compute the 3D Fourier transform of the isotropic correlation
function for sticky hard spheres in Percus–Yevick
approximation for given magnitude k of the 3D wave vector
(float).

	
__doc__ = '\n '

	

	
__module__ = 'smrt.microstructure_model.unified_sticky_hard_spheres'

	

smrt.microstructure_model.unified_teubner_strey module

Extended Teubner Strey model as described by Ruland 2010. This microstructure uses unified parameters as defined by
G. Picard, H. Löwe, F. Domine, L. Arnaud, F. Larue, V. Favier, E. Le Meur, E. Lefebvre, J. Savarino, A. Royer, The snow microstructural control on microwave scattering, AGU Advances.

parameters: frac_volume, porod_length, polydispersity

	
class UnifiedTeubnerStrey(params)

	Bases: smrt.microstructure_model.unified_autocorrelation.UnifiedAutocorrelation

	
__init__(params)

	Initialize self. See help(type(self)) for accurate signature.

	
basic_check()

	check consistency between the parameters

	
compute_ssa()

	Compute the ssa for a sphere

	
__doc__ = None

	

	
__module__ = 'smrt.microstructure_model.unified_teubner_strey'

	

	
autocorrelation_function(r)

	compute the real space autocorrelation function for the Teubner Strey model

	
ft_autocorrelation_function(k)

	Compute the 3D Fourier transform of the isotropic correlation
function for Teubner Strey for given magnitude k of the 3D wave vector
(float).

Module contents

Microstructure models are different representations of the snow microstructure. Because these representations are different, the
parameters to describe actual snow micro-structure depends on the model. For instance, the Sticky Hard Spheres medium is implemented
in sticky_hard_spheres and its parameters are: the radius (required) and
the stickiness (optional, default value is non-sticky, even though we do recommend to use a stickiness of ~0.1-0.3 in practice).

Because IBA is one of the important electromagnetic theories provided by SMRT, the first/main role of microstructure models is to provide
the Fourier transform of the autocorrelation functions. Hence most microstructure models are named after the autocorrelation function.
For instance, the exponential autocorrelation function is that used in MEMLS. Its only parameter is the
corr_length.

To use microstructure models, it is only required to read the documentation of each model to determine
the required and optional parameters. Selecting the microstructure model is usually done with make_snowpack which only requires the name of the
module (the filename with .py). The import of the module is automatic. For instance:

from smrt import make_snowpack

sp = make_snowpack([1, 1000], "exponential", density=[200, 300], corr_length=[0.2e-3, 0.5e-3])

This snippet creates a snowpack with the exponential autocorrelation function for all (2) layers. Import of the exponential
is automatic and creation of instance of the class Exponential is done by the model
smrt.core.model.Model.run() method.

smrt.interface package

Submodules

smrt.interface.coherent_flat module

Implement the coherent flat pseudo-interface, as in MEMLS. This interface is obtained by collapsing one layer and two interfaces into a single interface. Scattering in the layer is neglected.

	
process_coherent_layers(snowpack, emmodel_list, sensor)

	

	
class CoherentFlat(interfaces, layer, permittivity)

	Bases: object

A flat surface. The reflection is in the specular direction and the coefficient is calculated with the Fresnel coefficients

	
args = []

	

	
optional_args = {}

	

	
__init__(interfaces, layer, permittivity)

	Initialize self. See help(type(self)) for accurate signature.

	
specular_reflection_matrix(frequency, eps_1, eps_2, mu1, npol)

	
	compute the reflection coefficients for an array of incidence angles (given by their cosine)

	in medium 1. Medium 2 is where the beam is transmitted.

	Parameters

	
	eps_1 – permittivity of the medium where the incident beam is propagating.

	eps_2 – permittivity of the other medium.

	mu1 – array of cosine of incident angles.

	npol – number of polarization.

	Returns

	the reflection matrix

	
diffuse_reflection_matrix(frequency, eps_1, eps_2, mu_s, mu_i, dphi, npol)

	

	
coherent_transmission_matrix(frequency, eps_1, eps_2, mu1, npol)

	
	compute the transmission coefficients for the azimuthal mode m

	and for an array of incidence angles (given by their cosine)
in medium 1. Medium 2 is where the beam is transmitted.

	Parameters

	
	eps_1 – permittivity of the medium where the incident beam is propagating.

	eps_2 – permittivity of the other medium.

	mu1 – array of cosine of incident angles.

	npol – number of polarization.

	Returns

	the transmission matrix

	
_prepare_computation(frequency, eps_1, eps_2, mu1)

	

	
diffuse_transmission_matrix(frequency, eps_1, eps_2, mu_s, mu_i, dphi, npol)

	

	
__dict__ = mappingproxy({'__module__': 'smrt.interface.coherent_flat', '__doc__': 'A flat surface. The reflection is in the specular direction and the coefficient is calculated with the Fresnel coefficients\n\n', 'args': [], 'optional_args': {}, '__init__': <function CoherentFlat.__init__>, 'specular_reflection_matrix': <function CoherentFlat.specular_reflection_matrix>, 'diffuse_reflection_matrix': <function CoherentFlat.diffuse_reflection_matrix>, 'coherent_transmission_matrix': <function CoherentFlat.coherent_transmission_matrix>, '_prepare_computation': <function CoherentFlat._prepare_computation>, 'diffuse_transmission_matrix': <function CoherentFlat.diffuse_transmission_matrix>, '__dict__': <attribute '__dict__' of 'CoherentFlat' objects>, '__weakref__': <attribute '__weakref__' of 'CoherentFlat' objects>})

	

	
__doc__ = 'A flat surface. The reflection is in the specular direction and the coefficient is calculated with the Fresnel coefficients\n\n'

	

	
__module__ = 'smrt.interface.coherent_flat'

	

	
__weakref__

	list of weak references to the object (if defined)

smrt.interface.flat module

Implement the flat interface boundary condition between layers charcterized by their effective permittivities. The reflection and transmission
are computed using the Fresnel coefficient.

	
class Flat(**kwargs)

	Bases: smrt.core.interface.Interface

A flat surface. The reflection is in the specular direction and the coefficient is calculated with the Fresnel coefficients

Build the interface

	Parameters

	**kwargs – parameters such as roughness_rms, corr_length, Q, N, etc are required or optional depending on the model.

See the document of the model.

	
args = []

	

	
optional_args = {}

	

	
specular_reflection_matrix(frequency, eps_1, eps_2, mu1, npol)

	
	compute the reflection coefficients for an array of incidence angles (given by their cosine)

	in medium 1. Medium 2 is where the beam is transmitted.

	Parameters

	
	eps_1 – permittivity of the medium where the incident beam is propagating.

	eps_2 – permittivity of the other medium.

	mu1 – array of cosine of incident angles.

	npol – number of polarization.

	Returns

	the reflection matrix

	
diffuse_reflection_matrix(frequency, eps_1, eps_2, mu_s, mu_i, dphi, npol)

	

	
coherent_transmission_matrix(frequency, eps_1, eps_2, mu1, npol)

	
	compute the transmission coefficients for an array of incidence angles (given by their cosine)

	in medium 1. Medium 2 is where the beam is transmitted.

	Parameters

	
	eps_1 – permittivity of the medium where the incident beam is propagating.

	eps_2 – permittivity of the other medium.

	mu1 – array of cosine of incident angles.

	npol – number of polarization.

	Returns

	the transmission matrix

	
diffuse_transmission_matrix(frequency, eps_1, eps_2, mu_s, mu_i, dphi, npol)

	

	
__doc__ = 'A flat surface. The reflection is in the specular direction and the coefficient is calculated with the Fresnel coefficients\n\n'

	

	
__module__ = 'smrt.interface.flat'

	

smrt.interface.geometrical_optics module

Implement the interface boundary condition under the Geometrical Approximation between layers charcterized by their effective permittivities.
This approximation is suitable for surface with roughness much larger than the roughness scales, typically k*s >> 1 and k*l >> 1, where s the rms heigth and l
the correlation length. The precise validity range must be investigated by the user, this code does not raise any warning. An important charcateristic of
this approximation is that the scattering do not directly depend on frequency, the only (probably weak) dependence is through the permittivities of the media.

The model is parameterized by the mean_square_slope which can be calculated as mean_square_slope = 2*s**2/l**2 for surface with a Gaussian autocorrelation function.
Other equations may exist for other autocorrelation function.

This implementation is largely based on Tsang and Kong, Scattering of Electromagnetic Waves: Advanced Topics, 2001 (Tsang_tomeIII in the following)

	
class GeometricalOptics(**kwargs)

	Bases: smrt.core.interface.Interface

A very rough surface.

Build the interface

	Parameters

	**kwargs – parameters such as roughness_rms, corr_length, Q, N, etc are required or optional depending on the model.

See the document of the model.

	
args = ['mean_square_slope']

	

	
optional_args = {'shadow_correction': True}

	

	
clip_mu(mu)

	

	
specular_reflection_matrix(frequency, eps_1, eps_2, mu1, npol)

	
	compute the reflection coefficients for an array of incidence angles (given by their cosine)

	in medium 1. Medium 2 is where the beam is transmitted.

	Parameters

	
	eps_1 – permittivity of the medium where the incident beam is propagating.

	eps_2 – permittivity of the other medium

	mu1 – array of cosine of incident angles

	npol – number of polarization

	Returns

	the reflection matrix

	
diffuse_reflection_matrix(frequency, eps_1, eps_2, mu_s, mu_i, dphi, npol)

	
	compute the reflection coefficients for an array of incident, scattered and azimuth angles

	in medium 1. Medium 2 is where the beam is transmitted.

	Parameters

	
	eps_1 – permittivity of the medium where the incident beam is propagating.

	eps_2 – permittivity of the other medium

	mu1 – array of cosine of incident angles

	npol – number of polarization

	Returns

	the reflection matrix

	
ft_even_diffuse_reflection_matrix(frequency, eps_1, eps_2, mu_s, mu_i, m_max, npol)

	

	
ft_even_diffuse_transmission_matrix(frequency, eps_1, eps_2, mu_s, mu_i, m_max, npol)

	

	
coherent_transmission_matrix(frequency, eps_1, eps_2, mu1, npol)

	
	compute the transmission coefficients for the azimuthal mode m

	and for an array of incidence angles (given by their cosine)
in medium 1. Medium 2 is where the beam is transmitted.

	Parameters

	
	eps_1 – permittivity of the medium where the incident beam is propagating.

	eps_2 – permittivity of the other medium

	mu1 – array of cosine of incident angles

	npol – number of polarization

	Returns

	the transmission matrix

	
diffuse_transmission_matrix(frequency, eps_1, eps_2, mu_t, mu_i, dphi, npol)

	
	compute the transmission coefficients for an array of incident, scattered and azimuth angles

	in medium 1. Medium 2 is where the beam is transmitted.

	Parameters

	
	eps_1 – permittivity of the medium where the incident beam is propagating.

	eps_2 – permittivity of the other medium

	mu_i – array of cosine of incident angles

	mu_t – array of cosine of transmitted wave angles

	npol – number of polarization

	Returns

	the transmission matrix

	
reflection_coefficients(frequency, eps_1, eps_2, mu_i)

	

	
transmission_coefficients(frequency, eps_1, eps_2, mu_i)

	

	
_integrate_coefficients(mu, dphi, x)

	

	
__doc__ = 'A very rough surface.\n\n'

	

	
__module__ = 'smrt.interface.geometrical_optics'

	

	
shadow_function(mean_square_slope, cotan)

	

smrt.interface.geometrical_optics_backscatter module

Implement the interface boundary condition under the Geometrical Approximation between layers charcterized by their effective permittivities. This code is
for backscatter only, that is, to use as a substrate and at low frequency when the backscatter is the main mecahnism, and conversely when mulitple scattering
and double bounce between snow and substrate are negligible. In any other case, it is recommended to use GeometricalOptics.

The transmitted energy is also computed in an approximate way suitable for 1st order scattering. We use energy conservation to compute the total transmitted energy
and consider that all this energy is transmitted in the refraction (specular) direction.

	
class GeometricalOpticsBackscatter(**kwargs)

	Bases: smrt.core.interface.Interface

A very rough surface.

Build the interface

	Parameters

	**kwargs – parameters such as roughness_rms, corr_length, Q, N, etc are required or optional depending on the model.

See the document of the model.

	
args = ['mean_square_slope']

	

	
optional_args = {'shadow_correction': True}

	

	
specular_reflection_matrix(frequency, eps_1, eps_2, mu1, npol)

	
	compute the reflection coefficients for an array of incidence angles (given by their cosine)

	in medium 1. Medium 2 is where the beam is transmitted.

	Parameters

	
	eps_1 – permittivity of the medium where the incident beam is propagating.

	eps_2 – permittivity of the other medium

	mu1 – array of cosine of incident angles

	npol – number of polarization

	Returns

	the reflection matrix

	
diffuse_reflection_matrix(frequency, eps_1, eps_2, mu_s, mu_i, dphi, npol)

	
	compute the reflection coefficients for an array of incident, scattered and azimuth angles

	in medium 1. Medium 2 is where the beam is transmitted.

	Parameters

	
	eps_1 – permittivity of the medium where the incident beam is propagating.

	eps_2 – permittivity of the other medium

	mu1 – array of cosine of incident angles

	npol – number of polarization

	Returns

	the reflection matrix

	
ft_even_diffuse_reflection_matrix(frequency, eps_1, eps_2, mu_s, mu_i, m_max, npol)

	

	
coherent_transmission_matrix(frequency, eps_1, eps_2, mu1, npol)

	
	compute the transmission coefficients for an array of incidence angles (given by their cosine)

	in medium 1. Medium 2 is where the beam is transmitted. While Geometrical Optics, we here consider that power not reflected
is scattered in the specular transmitted direction. This is an approximation which is reasonable in the context of a “1st order”
geometrical optics.

	Parameters

	
	eps_1 – permittivity of the medium where the incident beam is propagating.

	eps_2 – permittivity of the other medium

	mu1 – array of cosine of incident angles

	npol – number of polarization

	Returns

	the transmission matrix

	
__doc__ = 'A very rough surface.\n\n'

	

	
__module__ = 'smrt.interface.geometrical_optics_backscatter'

	

smrt.interface.iem_fung92 module

Implement the interface boundary condition under IEM formulation provided by Fung et al. 1992. in IEEE TGRS.
Use of this code requires special attention because of two issues:

1) it only computes the backscatter diffuse reflection as described in Fung et al. 1992, the specular reflection
and the coherent transmission. It does not compute the full bi-static diffuse reflection and transmission.
As a consequence it is only suitable when single scattering is dominant, usually at low frequency when the medium
is weakly scattering. This happends when the main mechanism is the backscatter from the interface attenuated by
the medium. Another case is when the rough surface is relatively smooth, the specular reflection is relatively
strong and the energy can be scattered back by the medium (double bounce). For other situations, this code is not recommended.

2) Additionaly, IEM is known to work for a limited range of roughness. Usually it is considered valid for ks < 3 and
ks*kw < sqrt(eps) where k is the wavenumber, s the rms height and l the correlation length. The code print a warning
when out of this range. There is also limitation for smooth surfaces but no warning is printed.

Usage example:

	::

	# rms height and corr_length values work at 10 GHz
substrate = make_soil(“iem_fung92”, “dobson85”, temperature=260,

roughness_rms=1e-3,
corr_length=5e-2,
autocorrelation_function=”exponential”,
moisture=moisture,
clay=clay, sand=sand, drymatter=drymatter)

	
class IEM_Fung92(**kwargs)

	Bases: smrt.core.interface.Interface

A moderate rough surface model with backscatter, specular reflection and transmission only. Use with care!

Build the interface

	Parameters

	**kwargs – parameters such as roughness_rms, corr_length, Q, N, etc are required or optional depending on the model.

See the document of the model.

	
args = ['roughness_rms', 'corr_length']

	

	
optional_args = {'autocorrelation_function': 'exponential', 'series_truncation': 10, 'warning_handling': 'print'}

	

	
specular_reflection_matrix(frequency, eps_1, eps_2, mu1, npol)

	
	compute the reflection coefficients for an array of incidence angles (given by their cosine)

	in medium 1. Medium 2 is where the beam is transmitted.

	Parameters

	
	eps_1 – permittivity of the medium where the incident beam is propagating.

	eps_2 – permittivity of the other medium

	mu1 – array of cosine of incident angles

	npol – number of polarization

	Returns

	the reflection matrix

	
check_validity(ks, kl, eps_r)

	

	
fresnel_coefficients(eps_1, eps_2, mu_i, ks, kl)

	calculate the fresnel coefficients at the angle mu_i whatever is ks and kl according to the original formulation of Fung 1992

	
diffuse_reflection_matrix(frequency, eps_1, eps_2, mu_s, mu_i, dphi, npol, debug=False)

	
	compute the reflection coefficients for an array of incident, scattered and azimuth angles

	in medium 1. Medium 2 is where the beam is transmitted.

	Parameters

	
	eps_1 – permittivity of the medium where the incident beam is propagating.

	eps_2 – permittivity of the other medium

	mu1 – array of cosine of incident angles

	npol – number of polarization

	Returns

	the reflection matrix

	
W_n(n, k)

	

	
ft_even_diffuse_reflection_matrix(frequency, eps_1, eps_2, mu_s, mu_i, m_max, npol)

	

	
coherent_transmission_matrix(frequency, eps_1, eps_2, mu1, npol)

	
	compute the transmission coefficients for the azimuthal mode m

	and for an array of incidence angles (given by their cosine)
in medium 1. Medium 2 is where the beam is transmitted.

	Parameters

	
	eps_1 – permittivity of the medium where the incident beam is propagating.

	eps_2 – permittivity of the other medium

	mu1 – array of cosine of incident angles

	npol – number of polarization

	Returns

	the transmission matrix

	
__doc__ = 'A moderate rough surface model with backscatter, specular reflection and transmission only. Use with care!\n\n'

	

	
__module__ = 'smrt.interface.iem_fung92'

	

smrt.interface.iem_fung92_brogioni10 module

Implement the interface boundary condition under IEM formulation provided by Fung et al. 1992. in IEEE TGRS
with an extended domain of validity (for large roughness or correlation length) by switching the Fresnel
coefficients according to Brogioni et al. 2010, IJRS (doi: 10.1080/01431160903232808). A better but more
complex approach is given by Wu et al. 2003 (to be implemented).

Use of this code requires special attention.

	
class IEM_Fung92_Briogoni10(**kwargs)

	Bases: smrt.interface.iem_fung92.IEM_Fung92

A moderate rough surface model with backscatter, specular reflection and transmission only. Use with care!

Build the interface

	Parameters

	**kwargs – parameters such as roughness_rms, corr_length, Q, N, etc are required or optional depending on the model.

See the document of the model.

	
check_validity(ks, kl, eps_r)

	

	
fresnel_coefficients(eps_1, eps_2, mu_i, ks, kl)

	calculate the fresnel coefficients at the angle mu_i or 0° depending on ks*kl. The transition is abrupt.

	
__doc__ = 'A moderate rough surface model with backscatter, specular reflection and transmission only. Use with care!\n\n'

	

	
__module__ = 'smrt.interface.iem_fung92_brogioni10'

	

smrt.interface.radar_calibration_sphere module

Surface with a backscatter of 4pi.

	
class RadarCalibrationSphere(**kwargs)

	Bases: smrt.core.interface.Interface

Build the interface

	Parameters

	**kwargs – parameters such as roughness_rms, corr_length, Q, N, etc are required or optional depending on the model.

See the document of the model.

	
args = []

	

	
optional_args = {}

	

	
specular_reflection_matrix(frequency, eps_1, eps_2, mu1, npol)

	

	
diffuse_reflection_matrix(frequency, eps_1, eps_2, mu_s, mu_i, dphi, npol)

	

	
ft_even_diffuse_reflection_matrix(frequency, eps_1, eps_2, mu_s, mu_i, m_max, npol)

	

	
coherent_transmission_matrix(frequency, eps_1, eps_2, mu1, npol)

	

	
__doc__ = None

	

	
__module__ = 'smrt.interface.radar_calibration_sphere'

	

smrt.interface.test_geometrical_optics module

smrt.interface.test_iem_fung92 module

smrt.interface.test_iem_fung92_brogioni10 module

smrt.interface.transparent module

A transparent interface (no reflection). Useful for the unit-test mainly.

	
class Transparent

	Bases: object

	
args = []

	

	
optional_args = {}

	

	
specular_reflection_matrix(frequency, eps_1, eps_2, mu1, npol)

	
	compute the reflection coefficients for the azimuthal mode m

	and for an array of incidence angles (given by their cosine)
in medium 1. Medium 2 is where the beam is transmitted.

	Parameters

	
	eps_1 – permittivity of the medium where the incident beam is propagating.

	eps_2 – permittivity of the other medium

	mhu1 – array of cosine of incident angles

	npol – number of polarization

	
diffuse_reflection_matrix(frequency, eps_1, eps_2, mu_s, mu_i, dphi, npol)

	

	
coherent_transmission_matrix(frequency, eps_1, eps_2, mu1, npol)

	
	compute the transmission coefficients for the azimuthal mode m

	and for an array of incidence angles (given by their cosine)
in medium 1. Medium 2 is where the beam is transmitted.

	Parameters

	
	eps_1 – permittivity of the medium where the incident beam is propagating.

	eps_2 – permittivity of the other medium

	mu1 – array of cosine of incident angles

	npol – number of polarization

	Returns

	the transmission matrix

	
diffuse_transmission_matrix(frequency, eps_1, eps_2, mu_s, mu_i, dphi, npol)

	

	
__dict__ = mappingproxy({'__module__': 'smrt.interface.transparent', 'args': [], 'optional_args': {}, 'specular_reflection_matrix': <function Transparent.specular_reflection_matrix>, 'diffuse_reflection_matrix': <function Transparent.diffuse_reflection_matrix>, 'coherent_transmission_matrix': <function Transparent.coherent_transmission_matrix>, 'diffuse_transmission_matrix': <function Transparent.diffuse_transmission_matrix>, '__dict__': <attribute '__dict__' of 'Transparent' objects>, '__weakref__': <attribute '__weakref__' of 'Transparent' objects>, '__doc__': None})

	

	
__doc__ = None

	

	
__module__ = 'smrt.interface.transparent'

	

	
__weakref__

	list of weak references to the object (if defined)

smrt.interface.vector3 module

	
class vector3

	Bases: object

	
__slot__ = ['x', 'y', 'z', 'norm', 'norm2']

	

	
static from_xyz(x, y, z)

	

	
static from_angles(norm, mu, phi)

	

	
__add__(other)

	

	
__sub__(other)

	

	
__mul__(other)

	

	
__rmul__(other)

	

	
__truediv__(other)

	

	
cross(other)

	

	
dot(other)

	

	
__repr__()

	Return repr(self).

	
__dict__ = mappingproxy({'__module__': 'smrt.interface.vector3', '__slot__': ['x', 'y', 'z', 'norm', 'norm2'], 'from_xyz': <staticmethod object>, 'from_angles': <staticmethod object>, '__add__': <function vector3.__add__>, '__sub__': <function vector3.__sub__>, '__mul__': <function vector3.__mul__>, '__rmul__': <function vector3.__rmul__>, '__truediv__': <function vector3.__truediv__>, 'cross': <function vector3.cross>, 'dot': <function vector3.dot>, '__repr__': <function vector3.__repr__>, '__dict__': <attribute '__dict__' of 'vector3' objects>, '__weakref__': <attribute '__weakref__' of 'vector3' objects>, '__doc__': None})

	

	
__doc__ = None

	

	
__module__ = 'smrt.interface.vector3'

	

	
__weakref__

	list of weak references to the object (if defined)

Module contents

This module contains different type of boundary conditions between the layers.
Currently only flat interfaces are implemented.

For developers

All the different type of interface must defined the methods: specular_reflection_matrix and coherent_transmission_matrix.

It is currently not possible to implement rough interface, a (small) change is needed in DORT. Please contact the authors.

smrt.substrate package

Submodules

smrt.substrate.flat module

Implement the flat interface boundary for the bottom layer (substrate). The reflection and transmission
are computed using the Fresnel coefficients. This model does not take any specific parameter.

	
class Flat(temperature=None, permittivity_model=None, **kwargs)

	Bases: smrt.core.interface.SubstrateBase

	
__doc__ = None

	

	
__init__(temperature=None, permittivity_model=None, **kwargs)

	

	
__module__ = 'smrt.substrate.flat'

	

	
args = []

	

	
diffuse_reflection_matrix(frequency, eps_1, mu_s, mu_i, dphi, npol)

	

	
emissivity_matrix(frequency, eps_1, mu1, npol)

	

	
optional_args = {}

	

	
specular_reflection_matrix(frequency, eps_1, mu1, npol)

	

smrt.substrate.geometrical_optics module

Implement the geometrical optics rough substrate. See the documentation in geometrical_optics

	
class GeometricalOptics(temperature=None, permittivity_model=None, **kwargs)

	Bases: smrt.core.interface.SubstrateBase

	
__doc__ = None

	

	
__init__(temperature=None, permittivity_model=None, **kwargs)

	

	
__module__ = 'smrt.substrate.geometrical_optics'

	

	
args = ['mean_square_slope']

	

	
diffuse_reflection_matrix(frequency, eps_1, mu_s, mu_i, dphi, npol)

	

	
emissivity_matrix(frequency, eps_1, mu1, npol)

	

	
ft_even_diffuse_reflection_matrix(frequency, eps_1, mu_s, mu_i, m_max, npol)

	

	
optional_args = {'shadow_correction': True}

	

	
specular_reflection_matrix(frequency, eps_1, mu1, npol)

	

smrt.substrate.geometrical_optics_backscatter module

Implement the geometrical optics rough substrate. See the documentation in geometrical_optics_backscatter.

	
class GeometricalOpticsBackscatter(temperature=None, permittivity_model=None, **kwargs)

	Bases: smrt.core.interface.SubstrateBase

	
__doc__ = None

	

	
__init__(temperature=None, permittivity_model=None, **kwargs)

	

	
__module__ = 'smrt.substrate.geometrical_optics_backscatter'

	

	
args = ['mean_square_slope']

	

	
diffuse_reflection_matrix(frequency, eps_1, mu_s, mu_i, dphi, npol)

	

	
emissivity_matrix(frequency, eps_1, mu1, npol)

	

	
ft_even_diffuse_reflection_matrix(frequency, eps_1, mu_s, mu_i, m_max, npol)

	

	
optional_args = {'shadow_correction': True}

	

	
specular_reflection_matrix(frequency, eps_1, mu1, npol)

	

smrt.substrate.iem_fung92 module

Implement the flat interface boundary for the bottom layer (substrate). The reflection and transmission
are computed using the Fresnel coefficients. This model does not take any specific parameter.

	
class IEM_Fung92(temperature=None, permittivity_model=None, **kwargs)

	Bases: smrt.core.interface.SubstrateBase

	
__doc__ = None

	

	
__init__(temperature=None, permittivity_model=None, **kwargs)

	

	
__module__ = 'smrt.substrate.iem_fung92'

	

	
args = ['roughness_rms', 'corr_length']

	

	
diffuse_reflection_matrix(frequency, eps_1, mu_s, mu_i, dphi, npol)

	

	
emissivity_matrix(frequency, eps_1, mu1, npol)

	

	
ft_even_diffuse_reflection_matrix(frequency, eps_1, mu_s, mu_i, m_max, npol)

	

	
optional_args = {'autocorrelation_function': 'exponential', 'series_truncation': 10, 'warning_handling': 'print'}

	

	
specular_reflection_matrix(frequency, eps_1, mu1, npol)

	

smrt.substrate.iem_fung92_brogioni10 module

Implement the flat interface boundary for the bottom layer (substrate). The reflection and transmission
are computed using the Fresnel coefficients. This model does not take any specific parameter.

	
class IEM_Fung92_Briogoni10(temperature=None, permittivity_model=None, **kwargs)

	Bases: smrt.core.interface.SubstrateBase

	
__doc__ = None

	

	
__init__(temperature=None, permittivity_model=None, **kwargs)

	

	
__module__ = 'smrt.substrate.iem_fung92_brogioni10'

	

	
args = ['roughness_rms', 'corr_length']

	

	
diffuse_reflection_matrix(frequency, eps_1, mu_s, mu_i, dphi, npol)

	

	
emissivity_matrix(frequency, eps_1, mu1, npol)

	

	
ft_even_diffuse_reflection_matrix(frequency, eps_1, mu_s, mu_i, m_max, npol)

	

	
optional_args = {'autocorrelation_function': 'exponential', 'series_truncation': 10, 'warning_handling': 'print'}

	

	
specular_reflection_matrix(frequency, eps_1, mu1, npol)

	

smrt.substrate.radar_calibration_sphere module

Implement the radar_calibration_sphere interface boundary for the bottom layer (substrate).

	
class RadarCalibrationSphere(temperature=None, permittivity_model=None, **kwargs)

	Bases: smrt.core.interface.SubstrateBase

	
__doc__ = None

	

	
__init__(temperature=None, permittivity_model=None, **kwargs)

	

	
__module__ = 'smrt.substrate.radar_calibration_sphere'

	

	
args = []

	

	
diffuse_reflection_matrix(frequency, eps_1, mu_s, mu_i, dphi, npol)

	

	
emissivity_matrix(frequency, eps_1, mu1, npol)

	

	
ft_even_diffuse_reflection_matrix(frequency, eps_1, mu_s, mu_i, m_max, npol)

	

	
optional_args = {}

	

	
specular_reflection_matrix(frequency, eps_1, mu1, npol)

	

smrt.substrate.reflector module

Implement a reflective boundary conditions with prescribed reflection coefficient in the specular direction.
The reflection is set to a value or a function of theta. Azimuthal symmetry is assumed (no dependence on phi).

The specular_reflection parameter can be a scalar, a function or a dictionary.

	scalar: same reflection is use for all angles

	function: the function must take a unique argument theta array (in radians) and return the reflection as an array of the same size as theta

	dictionary: in this case, the keys must be ‘H’ and ‘V’ and the values are a scalar or a function and are interpreted as for the non-polarized case.

To make a reflector, it is recommended to use the helper function make_reflector().

Examples:

the full path import is required
from smrt.substrate.reflector import make_reflector

return a perfect reflector (the temperature is useless in this specific case)
ref = make_reflector(temperature=260, specular_reflection=1)

return a perfect absorber / black body.
ref = make_reflector(temperature=260, specular_reflection=0)

Specify a frequency and polarization dictionary of reflectivity
ref = make_reflector(specular_reflection={(21e9, 'H'): 0.5, (21e9, 'V'): 0.6, (36e9, 'H'): 0.7, (36e9, 'V'): 0.8})

Note

the backscatter coefficient argument is not implemented/documented yet.

	
make_reflector(temperature=None, specular_reflection=None)

	Construct a reflector or absorber instance.

	
class Reflector(temperature=None, permittivity_model=None, **kwargs)

	Bases: smrt.core.interface.Substrate

	
args = []

	

	
optional_args = {'backscatter_coefficient': None, 'specular_reflection': None}

	

	
specular_reflection_matrix(frequency, eps_1, mu1, npol)

	

	
emissivity_matrix(frequency, eps_1, mu1, npol)

	

	
_get_refl(frequency, polarization, mu1)

	

	
__doc__ = None

	

	
__module__ = 'smrt.substrate.reflector'

	

smrt.substrate.reflector_backscatter module

Implement a reflective boundary conditions with prescribed reflection coefficient in the specular direction.
The reflection is set to a value or a function of theta. Azimuthal symmetry is assumed (no dependence on phi).

The specular_reflection parameter can be a scalar, a function or a dictionary.

	scalar: same reflection is use for all angles

	function: the function must take a unique argument theta array (in radians) and return the reflection as an array of the same size as theta

	dictionary: in this case, the keys must be ‘H’ and ‘V’ and the values are a scalar or a function and are interpreted as for the non-polarized case.

To make a reflector, it is recommended to use the helper function make_reflector().

Examples:

the full path import is required
from smrt.substrate.reflector import make_reflector

return a perfect reflector (the temperature is useless in this specific case)
ref = make_reflector(temperature=260, specular_reflection=1)

return a perfect absorber / black body.
ref = make_reflector(temperature=260, specular_reflection=0)

Note

the backscatter coefficient argument is not implemented/documented yet.

	
make_reflector(temperature=None, specular_reflection=None, backscattering_coefficient=None)

	Construct a reflector or absorber instance.

	
class Reflector(temperature=None, permittivity_model=None, **kwargs)

	Bases: smrt.core.interface.Substrate

	
args = []

	

	
optional_args = {'backscattering_coefficient': None, 'specular_reflection': None}

	

	
specular_reflection_matrix(frequency, eps_1, mu1, npol)

	

	
ft_even_diffuse_reflection_matrix(frequency, eps_1, mu_s, mu_i, m_max, npol)

	

	
emissivity_matrix(frequency, eps_1, mu1, npol)

	

	
_get_refl(specular_reflection, mu1)

	

	
__doc__ = None

	

	
__module__ = 'smrt.substrate.reflector_backscatter'

	

smrt.substrate.rough_choudhury79 module

Implement the rough boundary reflectivity presented in Choudhury et al. (1979). It is not suitable for the active mode.

Applicable for ksigma<<1

parameters: roughness_rms

	
class ChoudhuryReflectivity(temperature=None, permittivity_model=None, **kwargs)

	Bases: smrt.core.interface.Substrate

	
args = ['roughness_rms']

	

	
optional_args = {}

	

	
adjust(rh, rv, frequency, eps_1, mu1)

	

	
specular_reflection_matrix(frequency, eps_1, mu1, npol)

	

	
emissivity_matrix(frequency, eps_1, mu1, npol)

	

	
__doc__ = None

	

	
__module__ = 'smrt.substrate.rough_choudhury79'

	

smrt.substrate.soil_qnh module

Implement the QNH soil model proposed by Wang, 1983. This model is for the passive mode, it is
not suitable for the active mode.

parameters: Q, N, H (or Nv and Nh instead of N)

Q and N are set to zero by default. The roughness rms is called H and is a required parameter (note: it is called roughness_rms in soil_wegmuller)

Examples

	soil = make_soil(“soil_qnh”, “dobson85”, moisture=0.2, sand=0.4, clay=0.3, drymatter=1100,

	Q=0, N=0, H=1e-2)

	
class SoilQNH(temperature=None, permittivity_model=None, **kwargs)

	Bases: smrt.core.interface.Substrate

	
args = ['H']

	

	
optional_args = {'N': 0.0, 'Nh': nan, 'Nv': nan, 'Q': 0.0}

	

	
adjust(rh, rv, mu1)

	

	
specular_reflection_matrix(frequency, eps_1, mu1, npol)

	

	
emissivity_matrix(frequency, eps_1, mu1, npol)

	

	
__doc__ = None

	

	
__module__ = 'smrt.substrate.soil_qnh'

	

smrt.substrate.soil_wegmuller module

Implement the empirical soil model presented in Wegmuller and Maetzler 1999. It is often used in microwave radiometry. It is
not suitable for the active mode.

parameters: roughness_rms

	
class SoilWegmuller(temperature=None, permittivity_model=None, **kwargs)

	Bases: smrt.core.interface.Substrate

	
args = ['roughness_rms']

	

	
optional_args = {}

	

	
adjust(rh, rv, frequency, eps_1, mu1)

	

	
specular_reflection_matrix(frequency, eps_1, mu1, npol)

	

	
emissivity_matrix(frequency, eps_1, mu1, npol)

	

	
__doc__ = None

	

	
__module__ = 'smrt.substrate.soil_wegmuller'

	

smrt.substrate.test_flat module

smrt.substrate.test_reflector module

smrt.substrate.test_rough_choudhury79 module

smrt.substrate.test_soil_qnh module

	
soil_setup()

	

smrt.substrate.test_soil_wegmuller module

smrt.substrate.transparent module

Implement the geometrical optics rough substrate. See the documentation in geometrical_optics_backscatter.

	
class Transparent(temperature=None, permittivity_model=None, **kwargs)

	Bases: smrt.core.interface.SubstrateBase

	
__doc__ = None

	

	
__init__(temperature=None, permittivity_model=None, **kwargs)

	

	
__module__ = 'smrt.substrate.transparent'

	

	
args = []

	

	
diffuse_reflection_matrix(frequency, eps_1, mu_s, mu_i, dphi, npol)

	

	
emissivity_matrix(frequency, eps_1, mu1, npol)

	

	
optional_args = {}

	

	
specular_reflection_matrix(frequency, eps_1, mu1, npol)

	

Module contents

This directory contains different options to represent the substrate, that is the lower boundary conditions of the radiation transfer equation.
This is usually the soil or ice or water but can be an aluminium plate or an absorber.

To create a substrate, use/implement an helper function such as make_soil(). This function is able to
automatically load a specific soil model .

Examples:

from smrt import make_soil
soil = make_soil("soil_wegmuller", "dobson85", moisture=0.2, sand=0.4, clay=0.3, drymatter=1100, roughness_rms=1e-2)

It is recommended to read first the documentation of make_soil() and then explore the different types of soil
models.

For developers

To develop a new substrate formulation, you must add a file in the smrt/substrate directory. The name of the file is used by make_soil
to build the substrate object.

smrt.atmosphere package

Submodules

smrt.atmosphere.simple_isotropic_atmosphere module

Implement an isotropic atmosphere with prescribed frequency-dependent emission (up and down) and transmittivity.

TB and transmissivity can be specified as a constant, or a frequency-dependent dictionary

To make an atmosphere, it is recommended to use the helper function make_atmosphere().

Examples:

the full path import is required
from smrt.atmosphere.simple_isotropic_atmosphere import make_atmosphere

Constant
atmos = make_atmosphere(tbdown=20., tbup=6., trans=1)

Frequency-dependent
atmos = make_atmosphere(tbdown={10e9: 15.2, 21e9: 23.5})

	
make_atmosphere(tbdown=0, tbup=0, trans=1)

	Construct an atmosphere instance.

	
class SimpleIsotropicAtmosphere(tbdown=0, tbup=0, trans=1)

	Bases: smrt.core.atmosphere.AtmosphereBase

	
__init__(tbdown=0, tbup=0, trans=1)

	Initialize self. See help(type(self)) for accurate signature.

	
tbdown(frequency, costheta, npol)

	

	
tbup(frequency, costheta, npol)

	

	
trans(frequency, costheta, npol)

	

	
__doc__ = None

	

	
__module__ = 'smrt.atmosphere.simple_isotropic_atmosphere'

	

smrt.atmosphere.test_atmosphere module

Module contents

This directory contains different options to represent the atmosphere, that is the upper boundary conditions
of the radiation transfer equation.

This part is currently not fully developed but should work for an isotropic atmosphere.

Example:

from smrt.atmosphere.basic import ConstantAtmosphere

atmosphere = ConstantAtmosphere(tbdown=2.7, tbup=2.7, trans=0.998)

The API is subject to change.

smrt.emmodel package

Submodules

smrt.emmodel.common module

	
rayleigh_scattering_matrix_and_angle_tsang00(mu_s, mu_i, dphi, npol=2)

	compute the Rayleigh matrix and half scattering angle. Based on Tsang theory and application p271 Eq 7.2.16

	
phase_matrix_from_scattering_amplitude(fvv, fvh, fhv, fhh, npol=2)

	compute the phase function according to the scattering amplitude. This follows Tsang’s convention.

	
extinction_matrix(sigma_V, sigma_H=None, npol=2, mu=None)

	compute the extinction matrix from the extinction in V and in H-pol.
If sigma_V or sigma_H are a scalar, they are expanded in a diagonal matrix provided mu is given.
If sigma_H is None, sigma_V is used.

	
rayleigh_scattering_matrix_and_angle_maetzler06(mu_s, mu_i, dphi, npol=2)

	compute the Rayleigh matrix and half scattering angle. Based on Mätzler 2006 book p111.
This version is relatively slow because it uses phase matrix rotations which is unnecessarily complex for the Rayleigh phase matrix
but would be of interest for other phase matrices.

	
Lmatrix(cos_phi, sin_phi_sign, npol)

	

	
rayleigh_scattering_matrix_and_angle(mu_s, mu_i, dphi, npol=2)

	compute the Rayleigh matrix and half scattering angle. Based on Tsang theory and application p271 Eq 7.2.16

	
class AdjustableEffectivePermittivityMixins

	Bases: object

Mixin that allow an EM model to have the effective permittivity model defined by the user instead of by the theory of the EM Model.

The EM model must declare a default effective permittivity model.

	
effective_permittivity()

	Calculation of complex effective permittivity of the medium.

	Returns effective_permittivity

	complex effective permittivity of the medium

	
__dict__ = mappingproxy({'__module__': 'smrt.emmodel.common', '__doc__': '\n Mixin that allow an EM model to have the effective permittivity model defined by the user instead of by the theory of the EM Model.\nThe EM model must declare a default effective permittivity model.\n\n ', 'effective_permittivity': <function AdjustableEffectivePermittivityMixins.effective_permittivity>, '__dict__': <attribute '__dict__' of 'AdjustableEffectivePermittivityMixins' objects>, '__weakref__': <attribute '__weakref__' of 'AdjustableEffectivePermittivityMixins' objects>})

	

	
__doc__ = '\n Mixin that allow an EM model to have the effective permittivity model defined by the user instead of by the theory of the EM Model.\nThe EM model must declare a default effective permittivity model.\n\n '

	

	
__module__ = 'smrt.emmodel.common'

	

	
__weakref__

	list of weak references to the object (if defined)

	
derived_EMModel(base_class, effective_permittivity_model)

	return a new IBA model with variant from the default IBA.

	Parameters

	effective_permittivity_model – permittivity mixing formula.

:returns a new class inheriting from IBA but with patched methods

smrt.emmodel.commontest module

smrt.emmodel.dmrt_qca_shortrange module

Compute scattering with DMRT QCA Short range. Short range means that it is accurate only for small
and weakly sticky spheres (high stickiness value). It diverges (increasing scattering coefficient) if these conditions
are not met. Numerically the size conditions can be evaluated with the ratio radius/wavelength as for Rayleigh scatterers.
For the stickiness, it is more difficult as this depends on the size of the scatterers and the fractional volume. In any case, it is
dangerous to use too small a stickiness value, especially if the grains are big.

This model is only compatible with the SHS microstructure model.

Examples

from smrt import make_snowpack, make_sensor

density = [345.0]
temperature = [260.0]
thickness = [70]
radius = [750e-6]
stickiness = [0.1]

	snowpack = make_snowpack(thickness, “sticky_hard_spheres”,

	density=density, temperature=temperature, radius=radius, stickiness=stickiness)

create the EM Model - Equivalent DMRTML
m = make_model(“dmrt_shortrange”, “dort”)

create the sensor
theta = np.arange(5.0, 80.0, 5.0)
radiometer = sensor.amsre()

	
class DMRT_QCA_ShortRange(sensor, layer, dense_snow_correction='auto')

	Bases: smrt.emmodel.rayleigh.Rayleigh

DMRT electromagnetic model in the short range limit (grains AND aggregates are small) as implemented in DMRTML

	Parameters

	
	sensor – sensor instance

	layer – layer instance

	Dense_snow_correction

	set how snow denser than half the ice density (ie. fractional volume larger than 0.5 is handled).

“auto” means that snow is modeled as air bubble in ice instead of ice spheres in air.
“bridging” should be developed in the future.

	
__init__(sensor, layer, dense_snow_correction='auto')

	Initialize self. See help(type(self)) for accurate signature.

	
basic_check()

	

	
__doc__ = ' DMRT electromagnetic model in the short range limit (grains AND aggregates are small) as implemented in DMRTML\n\n :param sensor: sensor instance\n :param layer: layer instance\n :dense_snow_correction: set how snow denser than half the ice density (ie. fractional volume larger than 0.5 is handled).\n "auto" means that snow is modeled as air bubble in ice instead of ice spheres in air.\n "bridging" should be developed in the future.\n '

	

	
__module__ = 'smrt.emmodel.dmrt_qca_shortrange'

	

smrt.emmodel.dmrt_qcacp_shortrange module

Compute scattering with DMRT QCACP Short range like in DMRT-ML. Short range means that it is accurate only for small
and weakly sticky spheres (high stickiness value). It diverges (increasing scattering coefficient) if these conditions
are not met. Numerically the size conditions can be evaluated with the ratio radius/wavelength as for Rayleigh scatterers.
For the stickiness, it is more difficult as this depends on the size of the scatterers and the fractional volume. In any case, it is
dangerous to use too small a stickiness value, especially if the grains are big.

This model is only compatible with the SHS microstructure model.

Examples

from smrt import make_snowpack, make_sensor

density = [345.0]
temperature = [260.0]
thickness = [70]
radius = [750e-6]
stickiness = [0.1]

	snowpack = make_snowpack(thickness, “sticky_hard_spheres”,

	density=density, temperature=temperature, radius=radius, stickiness=stickiness)

create the EM Model - Equivalent DMRTML
m = make_model(“dmrt_shortrange”, “dort”)

create the sensor
theta = np.arange(5.0, 80.0, 5.0)
radiometer = sensor.amsre()

	
class DMRT_QCACP_ShortRange(sensor, layer, dense_snow_correction='auto')

	Bases: smrt.emmodel.rayleigh.Rayleigh

DMRT electromagnetic model in the short range limit (grains AND aggregates are small) as implemented in DMRTML

	Parameters

	
	sensor – sensor instance

	layer – layer instance

	Dense_snow_correction

	set how snow denser than half the ice density (ie. fractional volume larger than 0.5 is handled).

“auto” means that snow is modeled as air bubble in ice instead of ice spheres in air.
“bridging” should be developed in the future.

	
__init__(sensor, layer, dense_snow_correction='auto')

	Initialize self. See help(type(self)) for accurate signature.

	
basic_check()

	

	
__doc__ = ' DMRT electromagnetic model in the short range limit (grains AND aggregates are small) as implemented in DMRTML\n\n :param sensor: sensor instance\n :param layer: layer instance\n :dense_snow_correction: set how snow denser than half the ice density (ie. fractional volume larger than 0.5 is handled).\n "auto" means that snow is modeled as air bubble in ice instead of ice spheres in air.\n "bridging" should be developed in the future.\n '

	

	
__module__ = 'smrt.emmodel.dmrt_qcacp_shortrange'

	

smrt.emmodel.iba module

Compute scattering from Improved Born Approximation theory as described in Mätzler 1998 and Mätzler and Wiesman 1999, except the
absorption coefficient which is computed with Polden von Staten formulation instead of the Eq 24 in Mätzler 1998. See iba_original.py for
a fully conforming IBA version.

This model allows for different microstructural models provided that the Fourier transform of the correlation function

may be performed. All properties relate to a single layer.

	
derived_IBA(effective_permittivity_model=<function polder_van_santen>)

	return a new IBA model with variant from the default IBA.

	Parameters

	effective_permittivity_model – permittivity mixing formula.

:returns a new class inheriting from IBA but with patched methods

	
class IBA(sensor, layer)

	Bases: smrt.emmodel.common.AdjustableEffectivePermittivityMixins

Improved Born Approximation electromagnetic model class.

As with all electromagnetic modules, this class is used to create an electromagnetic
object that holds information about the effective permittivity, extinction coefficient and
phase function for a particular snow layer. Due to the frequency dependence, information
about the sensor is required. Passive and active sensors also have different requirements on
the size of the phase matrix as redundant information is not calculated for the
passive case.

	Parameters

	
	sensor – object containing sensor characteristics

	layer – object containing snow layer characteristics (single layer)

Usage Example:

This class is not normally accessed directly by the user, but forms part of the
smrt model, together with the radiative solver (in this example, dort) i.e.:

from smrt import make_model
model = make_model("iba", "dort")

iba does not need to be imported by the user due to autoimport of electromagnetic model modules

	
static effective_permittivity_model(frac_volume, e0=1, eps=3.185, depol_xyz=None, length_ratio=None, inclusion_shape=None, mixing_ratio=1)

	Calculates effective permittivity of snow by solution of quadratic Polder Van Santen equation for spherical inclusion.

	Parameters

	
	frac_volume – Fractional volume of inclusions

	e0 – Permittivity of background (default is 1)

	eps – Permittivity of scattering material (default is 3.185 to compare with MEMLS)

	depol_xyz – [Optional] Depolarization factors, spherical isotropy is default. It is not taken into account here.

	length_ratio – Length_ratio. Used to estimate depolarization factors when they are not given.

	inclusion_shape – Assumption for shape(s) of brine inclusions. Can be a string for single shape, or a list/tuple/dict of strings for mixture of shapes. So far, we have the following shapes: “spheres” and “random_needles” (i.e. randomly-oriented elongated ellipsoidal inclusions).
If the argument is a dict, the keys are the shapes and the values are the mixing ratio. If it is a list, the mixing_ratio argument is required.

	mixing_ratio – The mixing ratio of the shapes. This is only relevant when inclusion_shape is a list/tuple. Mixing ratio must be a sequence with length len(inclusion_shape)-1. The mixing ratio of the last shapes is deduced as the sum of the ratios must equal to 1.

	Returns

	Effective permittivity

Usage example:

from smrt.permittivity.generic_mixing_formula import polder_van_santen
effective_permittivity = polder_van_santen(frac_volume, e0, eps)

for a mixture of 30% spheres and 70% needles
effective_permittivity = polder_van_santen(frac_volume, e0, eps, inclusion_shape={"spheres": 0.3, "random_needles": 0.7})
or
effective_permittivity = polder_van_santen(frac_volume, e0, eps, inclusion_shape=("spheres", "random_needles"), mixing_ratio=0.3)

Todo

Extend Polder Van Santen model to account for ellipsoidal inclusions

	
__init__(sensor, layer)

	Initialize self. See help(type(self)) for accurate signature.

	
compute_iba_coeff()

	Calculate angular independent IBA coefficient: used in both scattering coefficient and phase function calculations

Note

Requires mean squared field ratio (uses mean_sq_field_ratio method)

	
mean_sq_field_ratio(e0, eps)

	Mean squared field ratio calculation

Uses layer effective permittivity

	Parameters

	
	e0 – background relative permittivity

	eps – scattering constituent relative permittivity

	
basic_check()

	

	
compute_ks()

	Calculate scattering coefficient: integrate p11+p12 over mu

	
ks_integrand(mu)

	This is the scattering function for the IBA model.

It uses the phase matrix in the 1-2 frame. With incident angle chosen to be 0, the scattering
angle becomes the scattering zenith angle:

[image: \Theta = \theta]

Scattering coefficient is determined by integration over the scattering angle (0 to pi)

	Parameters

	mu – cosine of the scattering angle (single angle)

[image: ks_int = p11 + p22]

The integration is performed outside this method.

	
phase(mu_s, mu_i, dphi, npol=2)

	IBA Phase function (not decomposed).

	
ft_even_phase(mu_s, mu_i, m_max, npol=None)

	Calculation of the Fourier decomposed IBA phase function.

This method calculates the Improved Born Approximation phase matrix for all
Fourier decomposition modes and return the output.

Coefficients within the phase function are

Passive case (m = 0 only) and active (m = 0)

M = [Pvvp Pvhp]
 [Phvp Phhp]

Active case (m > 0):

M = [Pvvp Pvhp Pvup]
 [Phvp Phhp Phup]
 [Puvp Puhp Puup]

The IBA phase function is given in Mätzler, C. (1998). Improved Born approximation for
scattering of radiation in a granular medium. Journal of Applied Physics, 83(11),
6111-6117. Here, calculation of the phase matrix is based on the phase matrix in
the 1-2 frame, which is then rotated according to the incident and scattering angles,
as described in e.g. Thermal Microwave Radiation: Applications for Remote Sensing, Mätzler (2006).
Fourier decomposition is then performed to separate the azimuthal dependency from the incidence angle dependency.

	Parameters

	
	mu_s – 1-D array of cosine of viewing radiation stream angles (set by solver)

	mu_i – 1-D array of cosine of incident radiation stream angles (set by solver)

	m_max – maximum Fourier decomposition mode needed

	npol – number of polarizations considered (set from sensor characteristics)

	
compute_ka()

	IBA absorption coefficient calculated from the low-loss assumption of a general lossy medium.

Calculates ka from wavenumber in free space (determined from sensor), and effective permittivity
of the medium (snow layer property)

	Return ka

	absorption coefficient [m -1]

Note

This may not be suitable for high density material

	
ke(mu, npol=2)

	IBA extinction coefficient matrix

The extinction coefficient is defined as the sum of scattering and absorption
coefficients. However, the radiative transfer solver requires this in matrix form,
so this method is called by the solver.

	param mu

	1-D array of cosines of radiation stream incidence angles

	param npol

	number of polarization

	returns ke

	extinction coefficient matrix [m -1]

Note

Spherical isotropy assumed (all elements in matrix are identical).

Size of extinction coefficient matrix depends on number of radiation
streams, which is set by the radiative transfer solver.

	
__doc__ = '\n Improved Born Approximation electromagnetic model class.\n\n As with all electromagnetic modules, this class is used to create an electromagnetic\n object that holds information about the effective permittivity, extinction coefficient and\n phase function for a particular snow layer. Due to the frequency dependence, information\n about the sensor is required. Passive and active sensors also have different requirements on\n the size of the phase matrix as redundant information is not calculated for the\n passive case.\n\n :param sensor: object containing sensor characteristics\n :param layer: object containing snow layer characteristics (single layer)\n\n\n **Usage Example:**\n\n This class is not normally accessed directly by the user, but forms part of the\n smrt model, together with the radiative solver (in this example, `dort`) i.e.:\n\n ::\n\n from smrt import make_model\n model = make_model("iba", "dort")\n\n `iba` does not need to be imported by the user due to autoimport of electromagnetic model modules\n\n '

	

	
__module__ = 'smrt.emmodel.iba'

	

	
class IBA_MM(sensor, layer)

	Bases: smrt.emmodel.iba.IBA

	
__init__(sensor, layer)

	Initialize self. See help(type(self)) for accurate signature.

	
__doc__ = None

	

	
__module__ = 'smrt.emmodel.iba'

	

	
_mm_integrand(theta)

	

smrt.emmodel.iba_original module

Compute scattering from Improved Born Approximation theory. This model allows for different
microstructural models provided that the Fourier transform of the correlation function
may be performed. All properties relate to a single layer. The absorption is calculated with the original formula in Mätzler 1998

	
class IBA_original(sensor, layer)

	Bases: smrt.emmodel.iba.IBA

Original Improved Born Approximation electromagnetic model class.

As with all electromagnetic modules, this class is used to create an electromagnetic
object that holds information about the effective permittivity, extinction coefficient and
phase function for a particular snow layer. Due to the frequency dependence, information
about the sensor is required. Passive and active sensors also have different requirements on
the size of the phase matrix as redundant information is not calculated for the
passive case.

	Parameters

	
	sensor – object containing sensor characteristics

	layer – object containing snow layer characteristics (single layer)

	
compute_ka()

	IBA absorption coefficient calculated from the low-loss assumption of a general lossy medium.

Calculates ka from wavenumber in free space (determined from sensor), and effective permittivity
of the medium (snow layer property)

	Return ka

	absorption coefficient [m -1]

Note

This may not be suitable for high density material

	
__doc__ = '\n Original Improved Born Approximation electromagnetic model class.\n\n As with all electromagnetic modules, this class is used to create an electromagnetic\n object that holds information about the effective permittivity, extinction coefficient and\n phase function for a particular snow layer. Due to the frequency dependence, information\n about the sensor is required. Passive and active sensors also have different requirements on\n the size of the phase matrix as redundant information is not calculated for the\n passive case.\n\n :param sensor: object containing sensor characteristics\n :param layer: object containing snow layer characteristics (single layer)\n\n '

	

	
__module__ = 'smrt.emmodel.iba_original'

	

smrt.emmodel.nonscattering module

Non-scattering medium can be applied to medium without heteoreneity (like water or pure ice layer).

	
class NonScattering(sensor, layer)

	Bases: object

	
__init__(sensor, layer)

	Initialize self. See help(type(self)) for accurate signature.

	
basic_check()

	

	
ft_even_phase(mu_s, mu_i, m_max, npol=None)

	Non-scattering phase matrix.

Returns : null phase matrix

	
phase(mu_s, mu_i, dphi, npol=2)

	Non-scattering phase matrix.

Returns : null phase matrix

	
ke(mu, npol=2)

	

	
effective_permittivity()

	

	
__dict__ = mappingproxy({'__module__': 'smrt.emmodel.nonscattering', '__doc__': '\n ', '__init__': <function NonScattering.__init__>, 'basic_check': <function NonScattering.basic_check>, 'ft_even_phase': <function NonScattering.ft_even_phase>, 'phase': <function NonScattering.phase>, 'ke': <function NonScattering.ke>, 'effective_permittivity': <function NonScattering.effective_permittivity>, '__dict__': <attribute '__dict__' of 'NonScattering' objects>, '__weakref__': <attribute '__weakref__' of 'NonScattering' objects>})

	

	
__doc__ = '\n '

	

	
__module__ = 'smrt.emmodel.nonscattering'

	

	
__weakref__

	list of weak references to the object (if defined)

smrt.emmodel.prescribed_kskaeps module

	Use prescribed scattering ks and absorption ka coefficients and effective permittivity in the layer.

	The phase matrix has the Rayleigh form with prescribed scattering coefficient

This model is compatible with any microstructure but requires that ks, ka, and optionally effective permittivity to
be set in the layer

Example:

m = make_model("prescribed_kskaeps", "dort")
snowpack.layers[0].ks = ks
snowpack.layers[0].ka = ka
snowpack.layers[0].effective_permittivity = eff_eps

	
class Prescribed_KsKaEps(sensor, layer)

	Bases: smrt.emmodel.rayleigh.Rayleigh

	
__init__(sensor, layer)

	Initialize self. See help(type(self)) for accurate signature.

	
__doc__ = '\n '

	

	
__module__ = 'smrt.emmodel.prescribed_kskaeps'

	

smrt.emmodel.rayleigh module

Compute Rayleigh scattering. This theory requires the scatterers to be smaller than the wavelength and
the medium to be sparsely populated (eq. very low density in the case of snow).

This model is only compatible with the Independent Sphere microstructure model

	
class Rayleigh(sensor, layer)

	Bases: object

	
__init__(sensor, layer)

	Initialize self. See help(type(self)) for accurate signature.

	
basic_check()

	

	
ft_even_phase_baseonUlaby(mu_s, mu_i, m_max, npol=None)

	#
Equations are from pg 1188-1189 Ulaby, Moore, Fung. Microwave Remote Sensing Vol III.
See also pg 157 of Tsang, Kong and Shin: Theory of Microwave Remote Sensing (1985) - can be used to derive
the Ulaby equations.

	
ft_even_phase_basedonJin(mu_s, mu_i, m_max, npol=None)

	Rayleigh phase matrix.

These are the Fourier decomposed phase matrices for modes m = 0, 1, 2.
It is based on Y.Q. Jin

Coefficients within the phase function are:

	M = [Pvvp Pvhp]

	[Phvp Phhp]

Inputs are:
:param m: mode for decomposed phase matrix (0, 1, 2)
:param mu: vector of cosines of incidence angle

Returns P: phase matrix

	
ft_even_phase_tsang(mu_s, mu_i, m_max, npol=None)

	Rayleigh phase matrix.

These are the Fourier decomposed phase matrices for modes m = 0, 1, 2.
Equations are from p128 Tsang Application and Theory 200 and sympy calculations

Coefficients within the phase function are:

	M = [P[v, v] P[v, h] -P[v, u]]

	[P[h, v] P[h, h] -P[h, u]]
[P[u, v] P[u, h] P[u, u]]

Inputs are:
:param m: mode for decomposed phase matrix (0, 1, 2)
:param mu: vector of cosines of incidence angle

Returns P: phase matrix

	
ft_even_phase(mu_s, mu_i, m_max, npol=None)

	#
Equations are from pg 1188-1189 Ulaby, Moore, Fung. Microwave Remote Sensing Vol III.
See also pg 157 of Tsang, Kong and Shin: Theory of Microwave Remote Sensing (1985) - can be used to derive
the Ulaby equations.

	
phase(mu_s, mu_i, dphi, npol=2)

	

	
ke(mu, npol=2)

	return the extinction coefficient matrix

The extinction coefficient is defined as the sum of scattering and absorption
coefficients. However, the radiative transfer solver requires this in matrix form,
so this method is called by the solver.

	param mu

	1-D array of cosines of radiation stream incidence angles

	param npol

	number of polarizations

	returns ke

	extinction coefficient matrix [m -1]

Note

Spherical isotropy assumed (all elements in matrix are identical).

Size of extinction coefficient matrix depends on number of radiation
streams, which is set by the radiative transfer solver.

	
effective_permittivity()

	

	
__dict__ = mappingproxy({'__module__': 'smrt.emmodel.rayleigh', '__doc__': '\n ', '__init__': <function Rayleigh.__init__>, 'basic_check': <function Rayleigh.basic_check>, 'ft_even_phase_baseonUlaby': <function Rayleigh.ft_even_phase_baseonUlaby>, 'ft_even_phase_basedonJin': <function Rayleigh.ft_even_phase_basedonJin>, 'ft_even_phase_tsang': <function Rayleigh.ft_even_phase_tsang>, 'ft_even_phase': <function Rayleigh.ft_even_phase_baseonUlaby>, 'phase': <function Rayleigh.phase>, 'ke': <function Rayleigh.ke>, 'effective_permittivity': <function Rayleigh.effective_permittivity>, '__dict__': <attribute '__dict__' of 'Rayleigh' objects>, '__weakref__': <attribute '__weakref__' of 'Rayleigh' objects>})

	

	
__doc__ = '\n '

	

	
__module__ = 'smrt.emmodel.rayleigh'

	

	
__weakref__

	list of weak references to the object (if defined)

smrt.emmodel.sft_rayleigh module

Compute Strong Fluctuation Theory scattering. This theory requires the scatterers to be smaller than the wavelength

This model is only compatible with the Exponential autocorrelation function only

	
class SFT_Rayleigh(sensor, layer)

	Bases: smrt.emmodel.rayleigh.Rayleigh

	
__init__(sensor, layer)

	Initialize self. See help(type(self)) for accurate signature.

	
__doc__ = '\n '

	

	
__module__ = 'smrt.emmodel.sft_rayleigh'

	

smrt.emmodel.test_iba module

	
setup_func_sp()

	

	
setup_func_indep(radius=0.0005)

	

	
setup_func_shs()

	

	
setup_func_pc(pc)

	

	
setup_func_em(testpack=None)

	

	
setup_func_active(testpack=None)

	

	
setup_func_rayleigh()

	

	
setup_mu(stepsize, bypass_exception=None)

	

smrt.emmodel.test_iba_original module

	
setup_func_sp()

	

	
setup_func_indep(radius=0.0005)

	

	
setup_func_shs()

	

	
setup_func_pc(pc)

	

	
setup_func_em(testpack=None)

	

	
setup_func_active(testpack=None)

	

	
setup_func_rayleigh()

	

	
setup_mu(stepsize, bypass_exception=None)

	

smrt.emmodel.test_prescribed_kskaeps module

	
setup_func_sp()

	

	
setup_func_em(testpack=None)

	

smrt.emmodel.test_rayleigh module

	
setup_func_sp()

	

	
setup_func_em(testpack=None)

	

smrt.emmodel.test_sft_rayleigh module

	
setup_func_sp()

	

	
setup_func_em(testpack=None)

	

Module contents

This directory contains the different electromagnetic (EM) models that compute the scattering and absorption coefficients
and the phase function in a _given_ _layer_. The computation of the inter-layer propagation is done by the
rtsolver package.

The EM models differ in many aspects, one of which is the constraint on the microstructure model
they can be used with. The smrt.emmodel.iba model can use any
microstructure model that defines autocorrelation functions (or its FT). In contrast others such as
smrt.emmodel.dmrt_shortrange is bound to the smrt.microstructuremodel.sticky_hard_spheres microstructure
for theoretical reasons.

The selection of the EM model is done with the smrt.core.model.make_model() function

For developers

To implement a new scattering formulation / phase function, we recommend to start from an existing module, probably rayleigh.py is the simplest.
Copy this file to myscatteringtheory.py or any meaningful name. It can be directly used with make_model() function as follows:

m = make_model("myscatteringtheory", "dort")

Note that if the file is not in the emmodels directory, you must explicitly import the module and pass it
to make_model as a module object (instead of a string).

	An emmodel model must define:

	
	ks and ka attributes/properties

	ke() and effective_permittivity() methods

	at least one of the phase and ft_even_phase methods (both is better).

For the details it is recommended to contact the authors as the calling arguments and required methods may change time to time.

smrt.rtsolver package

Submodules

smrt.rtsolver.dort module

The Discrete Ordinate and Eigenvalue Solver is a multi-stream solver of the radiative transfer model. It is precise but less efficient
than 2 or 6 flux solvers. Different flavours of DORT (or DISORT) exist depending on the mode (passive or active), on the density of the medium
(sparse media have trivial inter-layer boundary conditions), on the way the streams are connected between the layers and on the way the phase
function is prescribed. The actual version is a blend between Picard et al. 2004 (active mode for sparse media) and DMRT-ML (Picard et al. 2013) which works
in passive mode only for snow. The DISORT often used in optics (Stamnes et al. 1988) works only for sparse medium and uses a development of the phase
function in Legendre polynomia on theta. The version used in DMRT-QMS (L. Tsang’s group) is similar to the present implementation except
it uses spline interpolation to connect constant-angle streams between the layers although we use direct connection by varying the angle
according to Snell’s law. A practical consequence is that the number of streams vary (due to internal reflection) and the value n_max_stream
only applies in the most refringent layer. The number of outgoing streams in the air is usually smaller, sometimes twice smaller (depends on the density profile).
It is important not to set too low a value for n_max_streams. E.g. 32 is usually fine, 64 or 128 are better but simulations will be much slower.

	
class DORT(n_max_stream=32, m_max=2, stream_mode='most_refringent', phase_normalization=True, error_handling='exception', process_coherent_layers=False, prune_deep_snowpack=None)

	Bases: object

Discrete Ordinate and Eigenvalue Solver

	Parameters

	
	n_max_stream – number of stream in the most refringent layer

	m_max – number of mode (azimuth)

	phase_normalization – the integral of the phase matrix should in principe be equal to the scattering coefficient.

However, some emmodels do not respect this strictly. In general a small difference is due to numerical rounding and is acceptable,
but a large difference rather indicates either a bug in the emmodel or input parameters that breaks the
assumption of the emmodel. The most typical case is when the grain size is too big compared to wavelength for emmodels
that rely on Rayleigh assumption. If this argument is to True (the default), the phase matrix is normalized to be coherent
with the scattering coefficient, but only when the difference is moderate (0.7 to 1.3).
If set to “force” the normalization is always performed. This option is dangerous because it may hide bugs or unappropriate
input parameters (typically too big grains). If set to False, no normalization is performed.
:param error_handling: If set to “exception” (the default), raise an exception in cause of error, stopping the code. If set to “nan”, return a nan, so the calculation can continue,
but the result is of course unusuable and the error message is not accessible. This is only recommended for long simulations that sometimes produce an error.
:param process_coherent_layers: Adapt the layers thiner than the wavelegnth using the MEMLS method. The radiative transfer theory is inadequate
layers thiner than the wavelength and using DORT with thin layers is generally not recommended. In some parcticular cases (such as ice lenses)
where the thin layer is isolated between large layers, it is possible to replace the thin layer by an equivalent reflective interface.
This neglects scattering in the thin layer, which is acceptable in most case, because the layer is thin. To use this option and more generally
to investigate ice lenses, it is recommended to read MEMLS documentation on this topic.
:param prune_deep_snowpack: this value is the optical depth from which the layers are discarded in the calculation. It is to be use to accelerate the calculations
for deep snowpacks or at high frequencies when the contribution of the lowest layers is neglegible. The optical depth is a good criteria to determine this limit.
A value of about 6 is recommended. Use with care, especially values lower than 6.

	
_broadcast_capability = {'phi', 'polarization', 'polarization_inc', 'theta', 'theta_inc'}

	

	
__init__(n_max_stream=32, m_max=2, stream_mode='most_refringent', phase_normalization=True, error_handling='exception', process_coherent_layers=False, prune_deep_snowpack=None)

	Initialize self. See help(type(self)) for accurate signature.

	
solve(snowpack, emmodels, sensor, atmosphere=None)

	solve the radiative transfer equation for a given snowpack, emmodels and sensor configuration.

	
dort(m_max=0, special_return=False)

	

	
prepare_intensity_array(streams)

	

	
dort_modem_banded(m, streams, eigenvalue_solver, interfaces, intensity_down_m, compute_coherent_only=False, special_return=False)

	

	
__dict__ = mappingproxy({'__module__': 'smrt.rtsolver.dort', '__doc__': 'Discrete Ordinate and Eigenvalue Solver\n\n :param n_max_stream: number of stream in the most refringent layer\n :param m_max: number of mode (azimuth)\n :param phase_normalization: the integral of the phase matrix should in principe be equal to the scattering coefficient.\n However, some emmodels do not respect this strictly. In general a small difference is due to numerical rounding and is acceptable,\n but a large difference rather indicates either a bug in the emmodel or input parameters that breaks the\n assumption of the emmodel. The most typical case is when the grain size is too big compared to wavelength for emmodels\n that rely on Rayleigh assumption. If this argument is to True (the default), the phase matrix is normalized to be coherent\n with the scattering coefficient, but only when the difference is moderate (0.7 to 1.3).\n If set to "force" the normalization is always performed. This option is dangerous because it may hide bugs or unappropriate\n input parameters (typically too big grains). If set to False, no normalization is performed.\n :param error_handling: If set to "exception" (the default), raise an exception in cause of error, stopping the code. If set to "nan", return a nan, so the calculation can continue, \n but the result is of course unusuable and the error message is not accessible. This is only recommended for long simulations that sometimes produce an error.\n :param process_coherent_layers: Adapt the layers thiner than the wavelegnth using the MEMLS method. The radiative transfer theory is inadequate\n layers thiner than the wavelength and using DORT with thin layers is generally not recommended. In some parcticular cases (such as ice lenses)\n where the thin layer is isolated between large layers, it is possible to replace the thin layer by an equivalent reflective interface.\n This neglects scattering in the thin layer, which is acceptable in most case, because the layer is thin. To use this option and more generally \n to investigate ice lenses, it is recommended to read MEMLS documentation on this topic.\n :param prune_deep_snowpack: this value is the optical depth from which the layers are discarded in the calculation. It is to be use to accelerate the calculations\n for deep snowpacks or at high frequencies when the contribution of the lowest layers is neglegible. The optical depth is a good criteria to determine this limit.\n A value of about 6 is recommended. Use with care, especially values lower than 6.\n ', '_broadcast_capability': {'polarization_inc', 'theta_inc', 'theta', 'polarization', 'phi'}, '__init__': <function DORT.__init__>, 'solve': <function DORT.solve>, 'dort': <function DORT.dort>, 'prepare_intensity_array': <function DORT.prepare_intensity_array>, 'dort_modem_banded': <function DORT.dort_modem_banded>, '__dict__': <attribute '__dict__' of 'DORT' objects>, '__weakref__': <attribute '__weakref__' of 'DORT' objects>})

	

	
__doc__ = 'Discrete Ordinate and Eigenvalue Solver\n\n :param n_max_stream: number of stream in the most refringent layer\n :param m_max: number of mode (azimuth)\n :param phase_normalization: the integral of the phase matrix should in principe be equal to the scattering coefficient.\n However, some emmodels do not respect this strictly. In general a small difference is due to numerical rounding and is acceptable,\n but a large difference rather indicates either a bug in the emmodel or input parameters that breaks the\n assumption of the emmodel. The most typical case is when the grain size is too big compared to wavelength for emmodels\n that rely on Rayleigh assumption. If this argument is to True (the default), the phase matrix is normalized to be coherent\n with the scattering coefficient, but only when the difference is moderate (0.7 to 1.3).\n If set to "force" the normalization is always performed. This option is dangerous because it may hide bugs or unappropriate\n input parameters (typically too big grains). If set to False, no normalization is performed.\n :param error_handling: If set to "exception" (the default), raise an exception in cause of error, stopping the code. If set to "nan", return a nan, so the calculation can continue, \n but the result is of course unusuable and the error message is not accessible. This is only recommended for long simulations that sometimes produce an error.\n :param process_coherent_layers: Adapt the layers thiner than the wavelegnth using the MEMLS method. The radiative transfer theory is inadequate\n layers thiner than the wavelength and using DORT with thin layers is generally not recommended. In some parcticular cases (such as ice lenses)\n where the thin layer is isolated between large layers, it is possible to replace the thin layer by an equivalent reflective interface.\n This neglects scattering in the thin layer, which is acceptable in most case, because the layer is thin. To use this option and more generally \n to investigate ice lenses, it is recommended to read MEMLS documentation on this topic.\n :param prune_deep_snowpack: this value is the optical depth from which the layers are discarded in the calculation. It is to be use to accelerate the calculations\n for deep snowpacks or at high frequencies when the contribution of the lowest layers is neglegible. The optical depth is a good criteria to determine this limit.\n A value of about 6 is recommended. Use with care, especially values lower than 6.\n '

	

	
__module__ = 'smrt.rtsolver.dort'

	

	
__weakref__

	list of weak references to the object (if defined)

	
muleye(x)

	

	
matmul(a, b, *args)

	

	
compiled_todiag

	

	
todiag(bmat, oi, oj, dmat)

	

	
extend_2pol_npol(x, npol)

	

	
class EigenValueSolver(ke, ks, ft_even_phase_function, mu, weight, m_max, normalization)

	Bases: object

	
__init__(ke, ks, ft_even_phase_function, mu, weight, m_max, normalization)

	Initialize self. See help(type(self)) for accurate signature.

	
solve(m, compute_coherent_only, debug_A=False)

	

	
normalize(m, A)

	

	
__dict__ = mappingproxy({'__module__': 'smrt.rtsolver.dort', '__init__': <function EigenValueSolver.__init__>, 'solve': <function EigenValueSolver.solve>, 'normalize': <function EigenValueSolver.normalize>, '__dict__': <attribute '__dict__' of 'EigenValueSolver' objects>, '__weakref__': <attribute '__weakref__' of 'EigenValueSolver' objects>, '__doc__': None})

	

	
__doc__ = None

	

	
__module__ = 'smrt.rtsolver.dort'

	

	
__weakref__

	list of weak references to the object (if defined)

	
class InterfaceProperties(frequency, interfaces, substrate, permittivity, streams, m_max, npol)

	Bases: object

	
__init__(frequency, interfaces, substrate, permittivity, streams, m_max, npol)

	Initialize self. See help(type(self)) for accurate signature.

	
reflection_top(l, m, compute_coherent_only)

	

	
reflection_bottom(l, m, compute_coherent_only)

	

	
transmission_top(l, m, compute_coherent_only)

	

	
transmission_bottom(l, m, compute_coherent_only)

	

	
static combine_coherent_diffuse_matrix(coh, diff, m, compute_coherent_only)

	

	
__dict__ = mappingproxy({'__module__': 'smrt.rtsolver.dort', '__init__': <function InterfaceProperties.__init__>, 'reflection_top': <function InterfaceProperties.reflection_top>, 'reflection_bottom': <function InterfaceProperties.reflection_bottom>, 'transmission_top': <function InterfaceProperties.transmission_top>, 'transmission_bottom': <function InterfaceProperties.transmission_bottom>, 'combine_coherent_diffuse_matrix': <staticmethod object>, '__dict__': <attribute '__dict__' of 'InterfaceProperties' objects>, '__weakref__': <attribute '__weakref__' of 'InterfaceProperties' objects>, '__doc__': None})

	

	
__doc__ = None

	

	
__module__ = 'smrt.rtsolver.dort'

	

	
__weakref__

	list of weak references to the object (if defined)

	
normalize_diffuse_matrix(mat, mu_st, mu_i, weights)

	

	
class Streams

	Bases: object

	
__slot__ = ('n', 'mu', 'weight', 'outmu', 'outweight', 'n_substrate', 'n_air')

	

	
__dict__ = mappingproxy({'__module__': 'smrt.rtsolver.dort', '__slot__': ('n', 'mu', 'weight', 'outmu', 'outweight', 'n_substrate', 'n_air'), '__dict__': <attribute '__dict__' of 'Streams' objects>, '__weakref__': <attribute '__weakref__' of 'Streams' objects>, '__doc__': None})

	

	
__doc__ = None

	

	
__module__ = 'smrt.rtsolver.dort'

	

	
__weakref__

	list of weak references to the object (if defined)

	
compute_stream(n_max_stream, permittivity, permittivity_substrate, mode='most_refringent')

	

	
gaussquad(n)

	

smrt.rtsolver.dort_nonormalization module

The Discrete Ordinate and Eigenvalue Solver is a multi-stream solver of the radiative transfer model. It is precise but less efficient
than 2 or 6 flux solvers. Different flavours of DORT (or DISORT) exist depending on the mode (passive or active), on the density of the medium
(sparse media have trivial inter-layer boundary conditions), on the way the streams are connected between the layers and on the way the phase
function is prescribed. The actual version is a blend between Picard et al. 2004 (active mode for sparse media) and DMRT-ML (Picard et al. 2013) which works
in passive mode only for snow. The DISORT often used in optics (Stamnes et al. 1988) works only for sparse medium and uses a development of the phase
function in Legendre polynomia on theta. The version used in DMRT-QMS (L. Tsang’s group) is similar to the present implementation except
it uses spline interpolation to connect constant-angle streams between the layers although we use direct connection by varying the angle
according to Snell’s law. A practical consequence is that the number of streams vary (due to internal reflection) and the value n_max_stream
only applies in the most refringent layer. The number of outgoing streams in the air is usually smaller, sometimes twice smaller (depends on the density profile).
It is important not to set too low a value for n_max_stream. E.g. 32 is usually fine, 64 or 128 are better but simulations will be much slower.

	
class DORT(n_max_stream=32, m_max=2, stream_mode='most_refringent')

	Bases: object

Discrete Ordinate and Eigenvalue Solver

	Parameters

	
	n_max_stream – number of stream in the most refringent layer

	m_max – number of mode (azimuth)

	
_broadcast_capability = {'phi', 'polarization', 'polarization_inc', 'theta', 'theta_inc'}

	

	
__init__(n_max_stream=32, m_max=2, stream_mode='most_refringent')

	Initialize self. See help(type(self)) for accurate signature.

	
solve(snowpack, emmodels, sensor, atmosphere=None)

	solve the radiative transfer equation for a given snowpack, emmodels and sensor configuration.

	
dort(m_max=0, special_return=False)

	

	
prepare_intensity_array(outmu, outweight)

	

	
dort_modem_banded(m, n_stream, mu, weight, outmu, n_stream_substrate, intensity_down_m, compute_coherent_only=False, special_return=False)

	

	
__dict__ = mappingproxy({'__module__': 'smrt.rtsolver.dort_nonormalization', '__doc__': 'Discrete Ordinate and Eigenvalue Solver\n\n :param n_max_stream: number of stream in the most refringent layer\n :param m_max: number of mode (azimuth)\n\n ', '_broadcast_capability': {'polarization_inc', 'theta_inc', 'theta', 'polarization', 'phi'}, '__init__': <function DORT.__init__>, 'solve': <function DORT.solve>, 'dort': <function DORT.dort>, 'prepare_intensity_array': <function DORT.prepare_intensity_array>, 'dort_modem_banded': <function DORT.dort_modem_banded>, '__dict__': <attribute '__dict__' of 'DORT' objects>, '__weakref__': <attribute '__weakref__' of 'DORT' objects>})

	

	
__doc__ = 'Discrete Ordinate and Eigenvalue Solver\n\n :param n_max_stream: number of stream in the most refringent layer\n :param m_max: number of mode (azimuth)\n\n '

	

	
__module__ = 'smrt.rtsolver.dort_nonormalization'

	

	
__weakref__

	list of weak references to the object (if defined)

	
fix_matrix(x)

	

	
muleye(x)

	

	
todiag(bmat, ij, dmat)

	

	
extend_2pol_npol(x, npol)

	

	
solve_eigenvalue_problem(m, ke, ft_even_phase, mu, weight)

	

	
compute_stream(n_max_stream, permittivity, permittivity_substrate, mode='most_refringent')

	

	
gaussquad(n)

	

smrt.rtsolver.nadir_lrm_altimetry module

Nadir Altimetry radiative transfer solver (Low Resolution Mode)

	Approximation in the medium:

	
	Backscatter is computed assuming only first order scattering. The propagation is then simply given by extinction

	Small angle approximation: to compute delay, the paths in the snow are along the z-axis. We neglect the off-nadir delay. This error is likely to be small (except for very deep penetration).

	At this stage, we consider that the backscatter of layers does not depend on theta (Geometrical optics or other, not AIEM). This is the isotropic assumption which is only valid for rough surfaces

Example:

Total backscatter waveform
m = make_model("iba", "nadir_lrm_altimetry")
Backscatter waveform split by volume, surface and interface scattering
m = make_model("iba", "nadir_lrm_altimetry", rtsolver_options=dict(return_contributions=True))
Run the model
m.run(altimeter, snowpack) # Prescribed altimeter sensor and snowpack

	
class NadirLRMAltimetry(waveform_model=None, oversampling=10, return_oversampled=False, skip_pfs_convolution=False, return_contributions=False, theta_inc_sampling=1, return_theta_inc_sampling=False, error_handling='exception')

	Bases: object

Solver based on Adams and Brown 1998 and Lacroix et al. 2008. Both models differ in the specific choices for the scattering and
backscatter of the interface, but are similar in the way the waveform is calculated, which concerns the solver here.

	Parameters

	
	oversampling – integer number defining the number of subgates used for the computation in each altimeter gate. This is equivalent to multiply the bandwidth by this number. It is used to perform more accurate computation.

	return_oversampled – by default the backscatter is returned for each gate. If set to True, the oversampled waveform is returned instead. See the ‘oversampling’ argument.

	return_contributions – return volume, surface and interface backscatter contributions in addition to the total backscatter.

	
_broadcast_capability = {}

	

	
__init__(waveform_model=None, oversampling=10, return_oversampled=False, skip_pfs_convolution=False, return_contributions=False, theta_inc_sampling=1, return_theta_inc_sampling=False, error_handling='exception')

	Initialize self. See help(type(self)) for accurate signature.

	
solve(snowpack, emmodels, sensor, atmosphere=None)

	Solves the radiative transfer equation for a given snowpack, emmodel and sensor configuration.

	
convolve_with_PFS_PTR_PDF(t_gate, backscatter, t_inc_sample)

	

	
gate_depth(eps=None)

	return gate depth that cover the snowpack for a regular time sampling

	
combined_depth_grid()

	

	
vertical_scattering_distribution(return_contributions, mu_i=1.0)

	
Compute the vertical backscattering distribution due to “grain” or volume scattering (symbol pvg in Eq 9 in Lacroix 2008) and

“interfaces” or ‘surface’ scattering (symbol pvl in Eq 9 in Lacroix 2008)

	param mu

	cosine of the incidence angles. Only the dependence on the surface scattering depend on mu_i

	
PFS_numerical(tau)

	

	
__dict__ = mappingproxy({'__module__': 'smrt.rtsolver.nadir_lrm_altimetry', '__doc__': "Solver based on Adams and Brown 1998 and Lacroix et al. 2008. Both models differ in the specific choices for the scattering and\n backscatter of the interface, but are similar in the way the waveform is calculated, which concerns the solver here.\n\n :param oversampling: integer number defining the number of subgates used for the computation in each altimeter gate. This is equivalent to multiply the bandwidth by this number. It is used to perform more accurate computation.\n \n :param return_oversampled: by default the backscatter is returned for each gate. If set to True, the oversampled waveform is returned instead. See the 'oversampling' argument.\n \n :param return_contributions: return volume, surface and interface backscatter contributions in addition to the total backscatter.\n \n ", '_broadcast_capability': {}, '__init__': <function NadirLRMAltimetry.__init__>, 'solve': <function NadirLRMAltimetry.solve>, 'convolve_with_PFS_PTR_PDF': <function NadirLRMAltimetry.convolve_with_PFS_PTR_PDF>, 'gate_depth': <function NadirLRMAltimetry.gate_depth>, 'combined_depth_grid': <function NadirLRMAltimetry.combined_depth_grid>, 'vertical_scattering_distribution': <function NadirLRMAltimetry.vertical_scattering_distribution>, 'PFS_numerical': <function NadirLRMAltimetry.PFS_numerical>, '__dict__': <attribute '__dict__' of 'NadirLRMAltimetry' objects>, '__weakref__': <attribute '__weakref__' of 'NadirLRMAltimetry' objects>})

	

	
__doc__ = "Solver based on Adams and Brown 1998 and Lacroix et al. 2008. Both models differ in the specific choices for the scattering and\n backscatter of the interface, but are similar in the way the waveform is calculated, which concerns the solver here.\n\n :param oversampling: integer number defining the number of subgates used for the computation in each altimeter gate. This is equivalent to multiply the bandwidth by this number. It is used to perform more accurate computation.\n \n :param return_oversampled: by default the backscatter is returned for each gate. If set to True, the oversampled waveform is returned instead. See the 'oversampling' argument.\n \n :param return_contributions: return volume, surface and interface backscatter contributions in addition to the total backscatter.\n \n "

	

	
__module__ = 'smrt.rtsolver.nadir_lrm_altimetry'

	

	
__weakref__

	list of weak references to the object (if defined)

	
fill_forward(a, where, axis=-1)

	

	
fill(a, where, novalue=0)

	

smrt.rtsolver.test_dort module

	
setup_snowpack()

	

	
setup_snowpack_with_DH()

	

	
setup_2layer_snowpack()

	

smrt.rtsolver.test_nadir_lrm_altimetry module

	
setup_nonscattering_snowpack()

	

	
setup_scattering_snowpack()

	

smrt.rtsolver.waveform_model module

	
class WaveformModel

	Bases: object

	
__dict__ = mappingproxy({'__module__': 'smrt.rtsolver.waveform_model', '__dict__': <attribute '__dict__' of 'WaveformModel' objects>, '__weakref__': <attribute '__weakref__' of 'WaveformModel' objects>, '__doc__': None})

	

	
__doc__ = None

	

	
__module__ = 'smrt.rtsolver.waveform_model'

	

	
__weakref__

	list of weak references to the object (if defined)

	
class Brown1977(sensor, numerical_convolution=False)

	Bases: smrt.rtsolver.waveform_model.WaveformModel

Antenna Gain formulation used by Brown 1977. The formula is exp(2/gamma * sin(theta)**2) for the perfect nadir case,
but is also available with off-nadir angles.

	
__name__ = 'Brown1977'

	

	
__init__(sensor, numerical_convolution=False)

	Initialize self. See help(type(self)) for accurate signature.

	
G(theta, phi)

	

	
PFS(tau, surface_slope=0, shift_nominal_gate=True)

	

	
PFS_PTR_PDF(tau, sigma_surface=0, surface_slope=0)

	compute the convolution of the PFS and PTR

	Parameters

	
	sensor – sensor to apply the antenna gain

	tau – time to which to compute the PFSxPTR

	sigma_surface – RMS height of the surface topography (meter)

	
__doc__ = 'Antenna Gain formulation used by Brown 1977. The formula is exp(2/gamma * sin(theta)**2) for the perfect nadir case,\nbut is also available with off-nadir angles.\n'

	

	
__module__ = 'smrt.rtsolver.waveform_model'

	

	
class Newkrik1992(sensor)

	Bases: smrt.rtsolver.waveform_model.WaveformModel

Antenna Gain formulation proposed by Newkrik and Brown, 1992. Compared to the classical Bronw 1977, it takes into account
the asymmetry of the antenna pattern in the co and cross-track direction.

	
__name__ = 'Newkrik1992'

	

	
__init__(sensor)

	Initialize self. See help(type(self)) for accurate signature.

	
G(theta, phi)

	

	
PFS(sensor, tau)

	

	
__doc__ = 'Antenna Gain formulation proposed by Newkrik and Brown, 1992. Compared to the classical Bronw 1977, it takes into account \n the asymmetry of the antenna pattern in the co and cross-track direction.\n\n'

	

	
__module__ = 'smrt.rtsolver.waveform_model'

	

Module contents

This directory contains different solvers of the radiative transfer equation. Based on the electromagnetic properties of
each layer computed by the EM model, these RT solvers compute the emission and propagation of energy in the medium up to the surface (the atmosphere is usually
dealt with independently in dedicated modules in smrt.atmosphere).

The solvers differ by the approximations and numerical methods. dort is currently the most accurate and recommended
in most cases unless the computation time is a constraint.

The selection of the solver is done with the make_model() function.

For Developers

To experiment with DORT, we recommand to copy the file dort.py to e.g. dort_mytest.py so it is immediately available through
make_model().

To develop a new solver that will be accessible by the make_model() function, you need to add
a file in this directory, give a look at dort.py which is not simple but the only one at the moment. Only the method solve needs
to be implemented. It must return a Result instance with the results. Contact the core developers to have more details.

smrt.core package

Submodules

smrt.core.atmosphere module

	
class AtmosphereBase

	Bases: object

	
__add__(other)

	Return a new snowpack made by setting the atmosphere

	Parameters

	other – the snowpack to add.

	
__iadd__(other)

	

	
__dict__ = mappingproxy({'__module__': 'smrt.core.atmosphere', '__add__': <function AtmosphereBase.__add__>, '__iadd__': <function AtmosphereBase.__iadd__>, '__dict__': <attribute '__dict__' of 'AtmosphereBase' objects>, '__weakref__': <attribute '__weakref__' of 'AtmosphereBase' objects>, '__doc__': None})

	

	
__doc__ = None

	

	
__module__ = 'smrt.core.atmosphere'

	

	
__weakref__

	list of weak references to the object (if defined)

smrt.core.error module

Definition of the Exception specific to SMRT.

	
exception SMRTError

	Bases: Exception

Error raised by the model

	
__doc__ = 'Error raised by the model'

	

	
__module__ = 'smrt.core.error'

	

	
__weakref__

	list of weak references to the object (if defined)

	
exception SMRTWarning

	Bases: Warning

Warning raised by the model

	
__doc__ = 'Warning raised by the model'

	

	
__module__ = 'smrt.core.error'

	

	
__weakref__

	list of weak references to the object (if defined)

	
smrt_warn(message)

	

smrt.core.filelock module

A platform independent file lock that supports the with-statement.

	
exception Timeout(lock_file)

	Bases: TimeoutError

Raised when the lock could not be acquired in timeout
seconds.

	
__init__(lock_file)

	

	
lock_file = None

	The path of the file lock.

	
__str__()

	Return str(self).

	
__doc__ = '\n Raised when the lock could not be acquired in *timeout*\n seconds.\n '

	

	
__module__ = 'smrt.core.filelock'

	

	
__weakref__

	list of weak references to the object (if defined)

	
class BaseFileLock(lock_file, timeout=-1)

	Bases: object

Implements the base class of a file lock.

	
__init__(lock_file, timeout=-1)

	

	
lock_file

	The path to the lock file.

	
timeout

	You can set a default timeout for the filelock. It will be used as
fallback value in the acquire method, if no timeout value (None) is
given.

If you want to disable the timeout, set it to a negative value.

A timeout of 0 means, that there is exactly one attempt to acquire the
file lock.

New in version 2.0.0.

	
_acquire()

	Platform dependent. If the file lock could be
acquired, self._lock_file_fd holds the file descriptor
of the lock file.

	
_release()

	Releases the lock and sets self._lock_file_fd to None.

	
is_locked

	True, if the object holds the file lock.

Changed in version 2.0.0: This was previously a method and is now a property.

	
acquire(timeout=None, poll_intervall=0.05)

	Acquires the file lock or fails with a Timeout error.

You can use this method in the context manager (recommended)
with lock.acquire():
 pass

Or use an equivalent try-finally construct:
lock.acquire()
try:
 pass
finally:
 lock.release()

	Parameters

	
	timeout (float) – The maximum time waited for the file lock.
If timeout < 0, there is no timeout and this method will
block until the lock could be acquired.
If timeout is None, the default timeout is used.

	poll_intervall (float) – We check once in poll_intervall seconds if we can acquire the
file lock.

	Raises

	Timeout – if the lock could not be acquired in timeout seconds.

Changed in version 2.0.0: This method returns now a proxy object instead of self,
so that it can be used in a with statement without side effects.

	
release(force=False)

	Releases the file lock.

Please note, that the lock is only completly released, if the lock
counter is 0.

Also note, that the lock file itself is not automatically deleted.

	Parameters

	force (bool) – If true, the lock counter is ignored and the lock is released in
every case.

	
__enter__()

	

	
__exit__(exc_type, exc_value, traceback)

	

	
__del__()

	

	
__dict__ = mappingproxy({'__module__': 'smrt.core.filelock', '__doc__': '\n Implements the base class of a file lock.\n ', '__init__': <function BaseFileLock.__init__>, 'lock_file': <property object>, 'timeout': <property object>, '_acquire': <function BaseFileLock._acquire>, '_release': <function BaseFileLock._release>, 'is_locked': <property object>, 'acquire': <function BaseFileLock.acquire>, 'release': <function BaseFileLock.release>, '__enter__': <function BaseFileLock.__enter__>, '__exit__': <function BaseFileLock.__exit__>, '__del__': <function BaseFileLock.__del__>, '__dict__': <attribute '__dict__' of 'BaseFileLock' objects>, '__weakref__': <attribute '__weakref__' of 'BaseFileLock' objects>})

	

	
__doc__ = '\n Implements the base class of a file lock.\n '

	

	
__module__ = 'smrt.core.filelock'

	

	
__weakref__

	list of weak references to the object (if defined)

	
class WindowsFileLock(lock_file, timeout=-1)

	Bases: smrt.core.filelock.BaseFileLock

Uses the msvcrt.locking() function to hard lock the lock file on
windows systems.

	
_acquire()

	Platform dependent. If the file lock could be
acquired, self._lock_file_fd holds the file descriptor
of the lock file.

	
_release()

	Releases the lock and sets self._lock_file_fd to None.

	
__doc__ = '\n Uses the :func:`msvcrt.locking` function to hard lock the lock file on\n windows systems.\n '

	

	
__module__ = 'smrt.core.filelock'

	

	
class UnixFileLock(lock_file, timeout=-1)

	Bases: smrt.core.filelock.BaseFileLock

Uses the fcntl.flock() to hard lock the lock file on unix systems.

	
_acquire()

	Platform dependent. If the file lock could be
acquired, self._lock_file_fd holds the file descriptor
of the lock file.

	
_release()

	Releases the lock and sets self._lock_file_fd to None.

	
__doc__ = '\n Uses the :func:`fcntl.flock` to hard lock the lock file on unix systems.\n '

	

	
__module__ = 'smrt.core.filelock'

	

	
class SoftFileLock(lock_file, timeout=-1)

	Bases: smrt.core.filelock.BaseFileLock

Simply watches the existence of the lock file.

	
_acquire()

	Platform dependent. If the file lock could be
acquired, self._lock_file_fd holds the file descriptor
of the lock file.

	
__doc__ = '\n Simply watches the existence of the lock file.\n '

	

	
__module__ = 'smrt.core.filelock'

	

	
_release()

	Releases the lock and sets self._lock_file_fd to None.

	
FileLock

	Alias for the lock, which should be used for the current platform. On
Windows, this is an alias for WindowsFileLock, on Unix for
UnixFileLock and otherwise for SoftFileLock.

alias of smrt.core.filelock.UnixFileLock

smrt.core.fresnel module

fresnel coefficients formulae used in the packages smrt.interface and smrt.substrate.

	
fresnel_coefficients(eps_1, eps_2, mu1)

	compute the reflection in two polarizations (H and V).

	Parameters

	
	eps_1 – permittivity of medium 1.

	eps_2 – permittivity of medium 2.

	mu1 – cosine zenith angle in medium 1.

	Returns

	rv, rh, mu2 the cosine of the angle in medium 2

	
brewster_angle(eps_1, eps_2)

	compute the brewster angle

	Parameters

	
	eps_1 – permittivity of medium 1.

	eps_2 – permittivity of medium 2.

	Returns

	angle in radians

	
fresnel_reflection_matrix(eps_1, eps_2, mu1, npol)

	compute the fresnel reflection matrix for/in medium 1 laying above medium 2.

	Parameters

	
	npol – number of polarizations to return.

	eps_1 – permittivity of medium 1.

	eps_2 – permittivity of medium 2.

	mu1 – cosine zenith angle in medium 1.

	Returns

	a matrix or the diagional depending on return_as_diagonal

	
fresnel_transmission_matrix(eps_1, eps_2, mu1, npol)

	compute the fresnel reflection matrix for/in medium 1 laying above medium 2.

	Parameters

	
	npol – number of polarizations to return.

	eps_1 – permittivity of medium 1.

	eps_2 – permittivity of medium 2.

	mu1 – cosine zenith angle in medium 1.

	Returns

	a matrix or the diagional depending on return_as_diagonal

smrt.core.globalconstants module

Global constants used throughout the model are defined here and imported as needed.
The constants are:

	Parameter

	Description

	Value

	DENSITY_OF_ICE

	Density of pure ice at 273.15K

	916.7 kg m -3

	FREEZING_POINT

	Freezing point of pure water

	273.15 K

	C_SPEED

	Speed of light in a vacuum

	2.99792458 x 10 8 ms -1

	PERMITTIVITY_OF_AIR

	Relative permittivity of air

	1

Usage example:

from smrt.core.globalconstants import DENSITY_OF_ICE

smrt.core.interface module

This module implements the base class for all the substrate models.
To create a substrate, it is recommended to use help functions such as make_soil()
rather than the class constructor.

	
make_interface(inst_class_or_modulename, broadcast=True, **kwargs)

	return an instance corresponding to the interface model with the provided arguments.

This function imports the interface module if necessary and
return an instance of the interface class with the provided arguments in **kwargs.

	Parameters

	
	inst_class_or_modulename – a class, and instance or the name of the python module in smrt/interface

	**kwargs – all the arguments required by the interface class

	
class Interface(**kwargs)

	Bases: object

Abstract class for interface between layer and substrate at the bottom of the snowpack.
It provides argument handling.

Build the interface

	Parameters

	**kwargs – parameters such as roughness_rms, corr_length, Q, N, etc are required or optional depending on the model.

See the document of the model.

	
args = []

	

	
optional_args = {}

	

	
__init__(**kwargs)

	Build the interface

	Parameters

	**kwargs – parameters such as roughness_rms, corr_length, Q, N, etc are required or optional depending on the model.

See the document of the model.

	
__dict__ = mappingproxy({'__module__': 'smrt.core.interface', '__doc__': ' Abstract class for interface between layer and substrate at the bottom of the snowpack.\nIt provides argument handling.\n', 'args': [], 'optional_args': {}, '__init__': <function Interface.__init__>, '__dict__': <attribute '__dict__' of 'Interface' objects>, '__weakref__': <attribute '__weakref__' of 'Interface' objects>})

	

	
__doc__ = ' Abstract class for interface between layer and substrate at the bottom of the snowpack.\nIt provides argument handling.\n'

	

	
__module__ = 'smrt.core.interface'

	

	
__weakref__

	list of weak references to the object (if defined)

	
class SubstrateBase(temperature=None, permittivity_model=None)

	Bases: object

Abstract class for substrate at the bottom of the snowpack.
It provides calculation of the permittivity constant for soil case. Argument handline is delegated to the instance of the interface

Build the substrate at the base of the snowpack

	Parameters

	
	temperature – temperature of the base of the snowpack. Can be the effective temperature if the substrate is slightly transparent

	permittivity_model – a function that return the permittivity as a function of frequency and temperature. Can also be a numerical value.

	**kwargs – other parameters such as roughness_rms, corr_length, Q, N, etc are required or optional depending on the model. See the document of the model.

	
__init__(temperature=None, permittivity_model=None)

	Build the substrate at the base of the snowpack

	Parameters

	
	temperature – temperature of the base of the snowpack. Can be the effective temperature if the substrate is slightly transparent

	permittivity_model – a function that return the permittivity as a function of frequency and temperature. Can also be a numerical value.

	**kwargs – other parameters such as roughness_rms, corr_length, Q, N, etc are required or optional depending on the model. See the document of the model.

	
permittivity(frequency)

	compute the permittivity for the given frequency using permittivity_model. This method returns None when no permittivity model is
available. This must be handled by the calling code and interpreted suitably.

	
__add__(other)

	

	
__iadd__(other)

	

	
__dict__ = mappingproxy({'__module__': 'smrt.core.interface', '__doc__': ' Abstract class for substrate at the bottom of the snowpack.\nIt provides calculation of the permittivity constant for soil case. Argument handline is delegated to the instance of the interface\n', '__init__': <function SubstrateBase.__init__>, 'permittivity': <function SubstrateBase.permittivity>, '__add__': <function SubstrateBase.__add__>, '__iadd__': <function SubstrateBase.__iadd__>, '__dict__': <attribute '__dict__' of 'SubstrateBase' objects>, '__weakref__': <attribute '__weakref__' of 'SubstrateBase' objects>})

	

	
__doc__ = ' Abstract class for substrate at the bottom of the snowpack.\nIt provides calculation of the permittivity constant for soil case. Argument handline is delegated to the instance of the interface\n'

	

	
__module__ = 'smrt.core.interface'

	

	
__weakref__

	list of weak references to the object (if defined)

	
substrate_from_interface(interface_cls)

	this decorator transform an interface class into a substrate class with automatic method

	
class Substrate(temperature=None, permittivity_model=None, **kwargs)

	Bases: smrt.core.interface.SubstrateBase, smrt.core.interface.Interface

	
__init__(temperature=None, permittivity_model=None, **kwargs)

	Build the substrate at the base of the snowpack

	Parameters

	
	temperature – temperature of the base of the snowpack. Can be the effective temperature if the substrate is slightly transparent

	permittivity_model – a function that return the permittivity as a function of frequency and temperature. Can also be a numerical value.

	**kwargs – other parameters such as roughness_rms, corr_length, Q, N, etc are required or optional depending on the model. See the document of the model.

	
__doc__ = None

	

	
__module__ = 'smrt.core.interface'

	

	
get_substrate_model(substrate_model)

	return the class corresponding to the substrate model called name.
This function imports the correct module if possible and returns the class

smrt.core.layer module

Layer instance contains all the properties for a single snow layer (e.g. temperature, frac_volume, etc).
It also contains a microstructure attribute that holds the microstructural properties (e.g. radius, corr_length, etc).
The class of this attribute defines the microstructure model to use (see smrt.microstructure_model package).

To create a single layer, it is recommended to use the function make_snow_layer() rather than the class constructor. However it is usually more convenient
to create a snowpack using make_snowpack().

For developers

The Layer class should not be modified at all even if you need new properties to define the layer (e.g. brine concentration, humidity, …). If the property you need to add is
related to geometric aspects, it is probably better to use an existing microstructure model or to create a new one. If the new parameter is not related to geometrical aspect,
write a function similar to make_snow_layer() (choose an explicit name for your purpose). In this function, create the layer by calling the Layer
constructor as in make_snow_layer() and then add your properties with lay.myproperty=xxx, … See the example of liquid water in make_snow_layer().
This approach avoids specialization of the Layer class. The new function can be in any file (inc. out of smrt directories), and should be added in make_medium
if it is of general interest and written in a generic way, that is, covers many use cases for many users with default arguments, etc.

	
class Layer(thickness, microstructure_model=None, temperature=273.15, permittivity_model=None, inclusion_shape=None, **kwargs)

	Bases: object

Contains the properties for a single layer including the microstructure attribute which holds the microstructure properties.

To create layer, it is recommended to use of the functions make_snow_layer() and similar

Build a snow layer.

	Parameters

	
	thickness – thickness of snow layer in m

	microstructure_model – module name of microstructure model to be used

	temperature – temperature of layer in K

	permittivity_model – list or tuple of permittivity value or model for the background and materials (e.g. air and ice). The permittivity can be

given as a complex (or real) value or a function that return a value (see smrt.permittivity modules)
:param inclusion_shape: assumption for shape of air/brine inclusions (so far, “spheres” and “random_needles” (i.e. elongated ellipsoidal inclusions) and “mix_spheres_needles” are implemented)

	
__init__(thickness, microstructure_model=None, temperature=273.15, permittivity_model=None, inclusion_shape=None, **kwargs)

	Build a snow layer.

	Parameters

	
	thickness – thickness of snow layer in m

	microstructure_model – module name of microstructure model to be used

	temperature – temperature of layer in K

	permittivity_model – list or tuple of permittivity value or model for the background and materials (e.g. air and ice). The permittivity can be

given as a complex (or real) value or a function that return a value (see smrt.permittivity modules)
:param inclusion_shape: assumption for shape of air/brine inclusions (so far, “spheres” and “random_needles” (i.e. elongated ellipsoidal inclusions) and “mix_spheres_needles” are implemented)

	
ssa

	return the SSA, compute it if necessary

	
frac_volume

	

	
permittivity(i, frequency)

	return the permittivity of the i-th medium depending on the frequency and internal layer properties. Usually i=0 is air and i=1 is ice for dry snow with a low or moderate density.

	Parameters

	
	i – number of the medium. 0 is reserved for the background

	frequency – frequency of the wave (Hz)

	Returns

	complex permittivity of the i-th medium

	
basic_checks()

	Function to provide very basic input checks on the layer information

Currently checks:

	temperature is between 100 and the freezing point (Kelvin units check),

	density is between 1 and DENSITY_OF_ICE (SI units check)

	layer thickness is above zero

	
inverted_medium()

	return the layer with inverted autocorrelation and inverted permittivities.

	
__setattr__(name, value)

	Implement setattr(self, name, value).

	
update(**kwargs)

	update the attributes. This method is to be used when recalculation of the state of the object
is necessary. See for instance SnowLayer.

	
__dict__ = mappingproxy({'__module__': 'smrt.core.layer', '__doc__': ' Contains the properties for a single layer including the microstructure attribute which holds the microstructure properties.\n\n To create layer, it is recommended to use of the functions :py:meth:`make_snow_layer` and similar\n\n ', '__init__': <function Layer.__init__>, 'ssa': <property object>, 'frac_volume': <property object>, 'permittivity': <function Layer.permittivity>, 'basic_checks': <function Layer.basic_checks>, 'inverted_medium': <function Layer.inverted_medium>, '__setattr__': <function Layer.__setattr__>, 'update': <function Layer.update>, '__dict__': <attribute '__dict__' of 'Layer' objects>, '__weakref__': <attribute '__weakref__' of 'Layer' objects>})

	

	
__doc__ = ' Contains the properties for a single layer including the microstructure attribute which holds the microstructure properties.\n\n To create layer, it is recommended to use of the functions :py:meth:`make_snow_layer` and similar\n\n '

	

	
__module__ = 'smrt.core.layer'

	

	
__weakref__

	list of weak references to the object (if defined)

	
get_microstructure_model(modulename, classname=None)

	return the class corresponding to the microstructure_model defined in modulename.

This function import the correct module if possible and return the class.
It is used internally and should not be needed for normal usage.

	Parameters

	modulename – name of the python module in smrt/microstructure_model

	
make_microstructure_model(modelname_or_class, **kwargs)

	create an microstructure instance.

This function is called internally and should not be needed for normal use.

	param modelname_or_class

	name of the module or directly the class.

	param type

	string

	param **kwargs

	all the arguments need for the specific autocorrelation.

	returns

	instance of the autocorrelation modelname with the parameters given in **kwargs

	Example

	

To import the StickyHardSpheres class with spheres radius of 1mm, stickiness of 0.5 and fractional_volume of 0.3:

shs = make_autocorrelation("StickyHardSpheres", radius=0.001, stickiness=0.5, frac_volume=0.3)

	
layer_properties(*required_arguments, optional_arguments=None, **kwargs)

	This decorator is used for the permittivity functions (or any other functions) to inject layer’s attributes as arguments.
The decorator declares the layer properties needed to call the function and the optional ones.
This allows permittivity functions to use any property of the layer, as long as it is defined.

smrt.core.lib module

	
get(x, i, name=None)

	

	
check_argument_size(x, n, name=None)

	

	
is_sequence(x)

	

	
len_atleast_1d(x)

	

	
class smrt_diag(arr)

	Bases: object

Scipy.sparse is very slow for diagonal matrix and numpy has no good support for linear algebra. This diag class
implements simple diagonal object without numpy subclassing (but without much features).
It seems that proper subclassing numpy and overloading matmul is a very difficult problem.

	
__array_ufunc__ = None

	

	
__init__(arr)

	Initialize self. See help(type(self)) for accurate signature.

	
diagonal()

	

	
shape

	

	
__len__()

	

	
__rmatmul__(other)

	

	
__matmul__(other)

	

	
__rmul__(other)

	

	
__mul__(other)

	

	
__add__(other)

	

	
__radd__(other)

	

	
__sub__(other)

	

	
__iadd__(other)

	

	
__isub__(other)

	

	
__getitem__(key)

	

	
check_type(other)

	

	
__dict__ = mappingproxy({'__module__': 'smrt.core.lib', '__doc__': 'Scipy.sparse is very slow for diagonal matrix and numpy has no good support for linear algebra. This diag class\n implements simple diagonal object without numpy subclassing (but without much features).\n It seems that proper subclassing numpy and overloading matmul is a very difficult problem.', '__array_ufunc__': None, '__init__': <function smrt_diag.__init__>, 'diagonal': <function smrt_diag.diagonal>, 'shape': <property object>, '__len__': <function smrt_diag.__len__>, '__rmatmul__': <function smrt_diag.__rmatmul__>, '__matmul__': <function smrt_diag.__matmul__>, '__rmul__': <function smrt_diag.__rmul__>, '__mul__': <function smrt_diag.__mul__>, '__add__': <function smrt_diag.__add__>, '__radd__': <function smrt_diag.__radd__>, '__sub__': <function smrt_diag.__sub__>, '__iadd__': <function smrt_diag.__iadd__>, '__isub__': <function smrt_diag.__isub__>, '__getitem__': <function smrt_diag.__getitem__>, 'check_type': <function smrt_diag.check_type>, '__dict__': <attribute '__dict__' of 'smrt_diag' objects>, '__weakref__': <attribute '__weakref__' of 'smrt_diag' objects>})

	

	
__doc__ = 'Scipy.sparse is very slow for diagonal matrix and numpy has no good support for linear algebra. This diag class\n implements simple diagonal object without numpy subclassing (but without much features).\n It seems that proper subclassing numpy and overloading matmul is a very difficult problem.'

	

	
__module__ = 'smrt.core.lib'

	

	
__weakref__

	list of weak references to the object (if defined)

	
class smrt_matrix(mat, mtype=None)

	Bases: object

SMRT uses two formats of matrix: one most suitable to implement emmodel where equations are different for each polarization and another one suitable
for DORT computation where stream and polarization are collapsed in one dimension to allow matrix operation. In addition, the reflection and transmission matrix
are often diagonal matrix, which needs to be handled because it saves space and allow much faster operations. This class implemented all these features.

	
__init__(mat, mtype=None)

	Initialize self. See help(type(self)) for accurate signature.

	
static empty(dims, mtype=None)

	

	
static zeros(dims, mtype=None)

	

	
static ones(dims, mtype=None)

	

	
static full(dims, value, mtype=None)

	

	
npol

	

	
isnull()

	

	
compress(mode=None, auto_reduce_npol=False)

	compress a matrix. This comprises several actions:
1) select one mode, if relevant (dense5, and diagonal5).
2) reduce the number of polarization from 3 to 2 if mode==0 and auto_reduce_npol=True.
3) convert the format of the matrix to compressed numpy, involving a change of the dimension order (pola and streams are merged).

	
__rmul__(other)

	

	
__mul__(other)

	

	
__truediv__(other)

	

	
__add__(other)

	

	
__sub__(other)

	

	
__abs__()

	

	
__getitem__(key)

	

	
__setitem__(key, v)

	

	
diagonal

	

	
sel(**kwargs)

	

	
__repr__()

	Return repr(self).

	
__dict__ = mappingproxy({'__module__': 'smrt.core.lib', '__doc__': 'SMRT uses two formats of matrix: one most suitable to implement emmodel where equations are different for each polarization and another one suitable\n for DORT computation where stream and polarization are collapsed in one dimension to allow matrix operation. In addition, the reflection and transmission matrix\n are often diagonal matrix, which needs to be handled because it saves space and allow much faster operations. This class implemented all these features.\n\n ', '__init__': <function smrt_matrix.__init__>, 'empty': <staticmethod object>, 'zeros': <staticmethod object>, 'ones': <staticmethod object>, 'full': <staticmethod object>, 'npol': <property object>, 'isnull': <function smrt_matrix.isnull>, 'compress': <function smrt_matrix.compress>, '__rmul__': <function smrt_matrix.__rmul__>, '__mul__': <function smrt_matrix.__mul__>, '__truediv__': <function smrt_matrix.__truediv__>, '__add__': <function smrt_matrix.__add__>, '__sub__': <function smrt_matrix.__sub__>, '__abs__': <function smrt_matrix.__abs__>, '__getitem__': <function smrt_matrix.__getitem__>, '__setitem__': <function smrt_matrix.__setitem__>, 'diagonal': <property object>, 'sel': <function smrt_matrix.sel>, '__repr__': <function smrt_matrix.__repr__>, '__dict__': <attribute '__dict__' of 'smrt_matrix' objects>, '__weakref__': <attribute '__weakref__' of 'smrt_matrix' objects>})

	

	
__doc__ = 'SMRT uses two formats of matrix: one most suitable to implement emmodel where equations are different for each polarization and another one suitable\n for DORT computation where stream and polarization are collapsed in one dimension to allow matrix operation. In addition, the reflection and transmission matrix\n are often diagonal matrix, which needs to be handled because it saves space and allow much faster operations. This class implemented all these features.\n\n '

	

	
__module__ = 'smrt.core.lib'

	

	
__weakref__

	list of weak references to the object (if defined)

	
isnull(m)

	return true if the smrt matrix is null

	
generic_ft_even_matrix(phase_function, m_max, nsamples=None)

	Calculation of the Fourier decomposed of the phase or reflection or transmission matrix provided by the function.

This method calculates the Fourier decomposition modes and return the output.

Coefficients within the phase function are

Passive case (m = 0 only) and active (m = 0)

M = [Pvvp Pvhp]
 [Phvp Phhp]

Active case (m > 0):

M = [Pvvp Pvhp Pvup]
 [Phvp Phhp Phup]
 [Puvp Puhp Puup]

	Parameters

	
	phase_function – must be a function taking dphi as input. It is assumed that phi is symmetrical (it is in cos(phi))

	m_max – maximum Fourier decomposition mode needed

	
set_max_numerical_threads(nthreads)

	set the maximum number of threads for a few known library. This is useful to disable parallel computing in
SMRT when using parallel computing to call multiple // SMRT runs. This avoid over-committing the CPUs and results
in much better performance. Inspire from joblib.

smrt.core.model module

A model in SMRT is composed of the electromagnetic scattering theory (smrt.emmodel) and
the radiative transfer solver (smrt.rtsolver).
The smrt.emmodel is responsible for computation of the scattering and absorption coefficients and the phase function of a layer.
It is applied to each layer and it is even possible
to choose different emmodel for each layer (for instance for a complex medium made of different materials: snow, soil, water, atmosphere, …).
The smrt.rtsolver is responsible for propagation of the incident or emitted energy through the layers, up to the surface, and eventually
through the atmosphere.

To build a model, use the make_model() function with the type of emmodel and type of rtsolver as arguments.
Then call the Model.run() method of the model instance by specifying the sensor (smrt.core.sensor.Sensor),
snowpack (smrt.core.snowpack.Snowpack) and optionally atmosphere (see smrt.atmosphere).
The results are returned as a Result which can then been interrogated to retrieve brightness temperature,
backscattering coefficient, etc.

Example:

m = make_model("iba", "rtsolver")

result = m.run(sensor, snowpack) # sensor and snowpack are created before

print(result.TbV())

The model can be run on a list of snowpacks or even more conveniently on a pandas.Series or pandas.DataFrame including snowpacks.
The first advantage is that by setting parallel_computation=True, the Model.run() method performs the simulation in parallel

on all the available cores of your machine and even possibly remotely on a high performance cluster using dask.
The second advantage is that the returned Result object contains all the simulations
and provide an easier way to plot the results or compute statistics.

	If a list of snowpacks is provided, it is recommended to also set the snowpack_dimension argument. It takes the form of a tuple

	(list of snowpack_dimension values, dimension name). The name and values are used to define the coordinates in the
Result object. This is useful with timeseries or sensitivity analysis for instance.

Example:

snowpacks = []
times = []
for file in filenames:
 # create a snowpack for each time series
 sp = ...
 snowpacks.append(sp)
 times.append(sp)

now run the model

res = m.run(sensor, snowpacks, snowpack_dimension=('time', times))

The res variable has now a coordinate time and res.TbV() returns a timeseries.

Using pandas.Series offers an even more elegant way to run SMRT and assemble the results of all the simulations.

thickness_list = np.arange(0, 10, 1)
snowpacks = pd.Series([make_snowpack(thickness=t, ……..) for t in thickness_list], index=thickness_list)
snowpacks is a pandas Series of snowpack objects with the thickness as index

now run the model

res = m.run(sensor, snowpacks, parallel_computation=True)

convert the result into a datframe
res = res.to_dataframe()

The res variable is a dataframe with the thickness as index and the channels of the sensor as column.

Using pandas.DataFrame is similar. One column must contain Snowpack objects (see snowpack_column argument).
The results of the simulations are automatically joined with this dataframe and returned by
to_dataframe() or to_dataframe().

df is a DataFrame with several parameters in each row.

add a snowpack object for each row
df[‘snowpack’] = [make_snowpack(thickness=row[‘thickness’], ……..) for i, row in df.iterrows()]]

now run the model
res = m.run(sensor, snowpacks, parallel_computation=True)

convert the result into a datframe
res = res.to_dataframe()

The res variable is a pandas.DataFrame equal to df + the results at all sensor’s channel added.

	
make_model(emmodel, rtsolver=None, emmodel_options=None, rtsolver_options=None, emmodel_kwargs=None, rtsolver_kwargs=None)

	create a new model with a given EM model and RT solver. The model is then ready to be run using the Model.run() method.
This function is the privileged way to create models compared to class instantiation.
It supports automatic import of the emmodel and rtsolver modules.

	Parameters

	emmodel – type of emmodel to use. Can be given by the name of a file/module in the emmodel directory (as a string) or a class.

List (and dict, respectively) can be provided when a different emmodel is needed for every layer (or every kind of layer medium).
:type emmodel: string or class or list of strings or classes or dict of strings or classes.
If a list of emmodels is given, the size must be the same as the number of layers in the snowpack.
If a dict is given, the keys are the kinds of medium and the values are the associated emmodels to each sort of medium.
The layer attribute ‘medium’ is used to determine the emmodel to use for each layer.
:type emmodel: string or class; or list of strings or classes; or dict of strings or classes.
:param rtsolver: type of RT solver to use. Can be given by the name of a file/module in the rtsolver directeory (as a string)
or a class.
:type rtsolver: string or class. Can be None when only computation of the layer electromagnetic properties is needed.
:param emmodel_options: extra arguments to use to create emmodel instance. Valid arguments depend on the selected emmodel.
It is documented in for each emmodel class.
:type emmodel_options: dict or a list of dict. In the latter case, the size of the list must be the same as
the number of layers in the snowpack.
:param rtsolver_options: extra to use to create the rtsolver instance (see __init__ of the solver used).
:type rtsolver_options: dict

	Returns

	a model instance

	
get_emmodel(emmodel)

	get a new emmodel class from the file name

	
make_emmodel(emmodel, sensor, layer, **emmodel_options)

	create a new emmodel instance based on the emmodel class or string
:param emmodel: type of emmodel to use. Can be given by the name of a file/module in the emmodel directory (as a string) or a class.
:param sensor: sensor to use for the calculation.
:param layer: layer to use for the calculation

	
class Model(emmodel, rtsolver, emmodel_options=None, rtsolver_options=None)

	Bases: object

This class drives the whole calculation

create a new model. It is not recommended to instantiate Model class directly. Instead use the make_model() function.

	
__init__(emmodel, rtsolver, emmodel_options=None, rtsolver_options=None)

	create a new model. It is not recommended to instantiate Model class directly. Instead use the make_model() function.

	
set_rtsolver_options(options=None, **kwargs)

	set the option for the rtsolver

	
set_emmodel_options(options=None, **kwargs)

	set the options for the emmodel

	
run(sensor, snowpack, atmosphere=None, snowpack_dimension=None, snowpack_column='snowpack', progressbar=False, parallel_computation=False, runner=None)

	Run the model for the given sensor configuration and return the results

	Parameters

	
	sensor – sensor to use for the calculation

	snowpack – snowpack to use for the calculation. Can be a single snowpack, a list of snowpack, a dict of snowpack or
a SensitivityStudy object.

	snowpack_dimension – name and values (as a tuple) of the dimension to create for the results when a list of snowpack
is provided. E.g. time, point, longitude, latitude. By default the dimension is called ‘snowpack’ and the values are
rom 1 to the number of snowpacks.

	snowpack_column – when snowpack is a DataFrame this argument is used to specify which column contians the Snowpack objects

	progressbar – if True, display a progress bar during multi-snowpacks computation

	parallel_computation – if True, use the joblib library to run the simulation in parallel.
Otherwise, the simulations are run sequentially. See ‘runner’ arguments.

	runner – a ‘runner’ is a function (or more likely a class with a __call__ method) that takes a function and a
list/generator of simulations, executes the function on each simulation and returns a list of results.
‘parallel_computation’ allows to select between two default (basic) runners (sequential and joblib).
Use ‘runner’ for more advanced parallel distributed computations.

	Returns

	result of the calculation(s) as a Results instance

	
prepare_simulations(sensor, snowpack, snowpack_dimension, snowpack_column)

	

	
prepare_emmodels(sensor, snowpack)

	

	
run_single_simulation(simulation, atmosphere)

	

	
run_later(sensor, snowpack, **kwargs)

	

	
__dict__ = mappingproxy({'__module__': 'smrt.core.model', '__doc__': ' This class drives the whole calculation\n ', '__init__': <function Model.__init__>, 'set_rtsolver_options': <function Model.set_rtsolver_options>, 'set_emmodel_options': <function Model.set_emmodel_options>, 'run': <function Model.run>, 'prepare_simulations': <function Model.prepare_simulations>, 'prepare_emmodels': <function Model.prepare_emmodels>, 'run_single_simulation': <function Model.run_single_simulation>, 'run_later': <function Model.run_later>, '__dict__': <attribute '__dict__' of 'Model' objects>, '__weakref__': <attribute '__weakref__' of 'Model' objects>})

	

	
__doc__ = ' This class drives the whole calculation\n '

	

	
__module__ = 'smrt.core.model'

	

	
__weakref__

	list of weak references to the object (if defined)

	
class SequentialRunner(progressbar=False)

	Bases: object

Run the simulations sequentially on a single (local) core. This is the most simple way to run smrt simulations, but the
efficiency is poor.

	
__init__(progressbar=False)

	Initialize self. See help(type(self)) for accurate signature.

	
__call__(function, argument_list)

	Call self as a function.

	
__dict__ = mappingproxy({'__module__': 'smrt.core.model', '__doc__': 'Run the simulations sequentially on a single (local) core. This is the most simple way to run smrt simulations, but the \nefficiency is poor.', '__init__': <function SequentialRunner.__init__>, '__call__': <function SequentialRunner.__call__>, '__dict__': <attribute '__dict__' of 'SequentialRunner' objects>, '__weakref__': <attribute '__weakref__' of 'SequentialRunner' objects>})

	

	
__doc__ = 'Run the simulations sequentially on a single (local) core. This is the most simple way to run smrt simulations, but the \nefficiency is poor.'

	

	
__module__ = 'smrt.core.model'

	

	
__weakref__

	list of weak references to the object (if defined)

	
class JoblibParallelRunner(backend='loky', n_jobs=-1, max_numerical_threads=1)

	Bases: object

Run the simulations on the local machine on all the cores, using the joblib library for parallelism.

Joblib is a lightweight library for embarasingly parallel task.

	Parameters

	
	backend – see joblib documentation. The default ‘loky’ is the recommended backend.

	n_jobs – see joblib documentation. The default is to use all the cores.

	max_numerical_threads – set_max_numerical_threads(). The default avoid miximing different

parallelism techniques.

	
__init__(backend='loky', n_jobs=-1, max_numerical_threads=1)

	Joblib is a lightweight library for embarasingly parallel task.

	Parameters

	
	backend – see joblib documentation. The default ‘loky’ is the recommended backend.

	n_jobs – see joblib documentation. The default is to use all the cores.

	max_numerical_threads – set_max_numerical_threads(). The default avoid miximing different

parallelism techniques.

	
__dict__ = mappingproxy({'__module__': 'smrt.core.model', '__doc__': 'Run the simulations on the local machine on all the cores, using the joblib library for parallelism.', '__init__': <function JoblibParallelRunner.__init__>, '__call__': <function JoblibParallelRunner.__call__>, '__dict__': <attribute '__dict__' of 'JoblibParallelRunner' objects>, '__weakref__': <attribute '__weakref__' of 'JoblibParallelRunner' objects>})

	

	
__doc__ = 'Run the simulations on the local machine on all the cores, using the joblib library for parallelism.'

	

	
__module__ = 'smrt.core.model'

	

	
__weakref__

	list of weak references to the object (if defined)

	
__call__(function, argument_list)

	Call self as a function.

smrt.core.optional_numba module

smrt.core.plugin module

	
register_package(pkg)

	

	
import_class

	Import the modulename and return either the class named “classname” or the first class defined in the module if classname is None.

	Parameters

	
	scope – scope where to search for the module.

	modulename – name of the module to load.

	classname – name of the class to read from the module.

	
do_import_class(modulename, classname)

	

smrt.core.progressbar module

A progress bar copied and adapted from pyMC code (dec 2014)

	
class TextProgressBar(iterations, printer, width=40, interval=None)

	Bases: smrt.core.progressbar.ProgressBar

Use Progress

	
__init__(iterations, printer, width=40, interval=None)

	Initialize self. See help(type(self)) for accurate signature.

	
animate(i, dummy=None)

	

	
progbar(i)

	

	
bar(percent)

	

	
__doc__ = 'Use :class:`Progress`'

	

	
__module__ = 'smrt.core.progressbar'

	

	
progress_bar(iters, interval=None)

	A progress bar for Python/IPython/IPython notebook

	Parameters

	
	iters (int) – number of iterations (steps in the loop)

	interval – number of intervals to use to update the progress bar (20
by default)

from easydev import progress_bar
pb = progress_bar(10)
for i in range(1,10):
 import time
 time.sleep(0.1)
 pb.animate(i)

	
class Progress(iters, interval=None)

	Bases: object

Generic progress bar for python, IPython, IPython notebook

from easydev import Progress
pb = Progress(100, interval=1)
pb.animate(10)

	
__init__(iters, interval=None)

	Initialize self. See help(type(self)) for accurate signature.

	
animate(i)

	

	
_get_elapsed()

	

	
elapsed

	

	
__dict__ = mappingproxy({'__module__': 'smrt.core.progressbar', '__doc__': 'Generic progress bar for python, IPython, IPython notebook\n\n ::\n\n from easydev import Progress\n pb = Progress(100, interval=1)\n pb.animate(10)\n ', '__init__': <function Progress.__init__>, 'animate': <function Progress.animate>, '_get_elapsed': <function Progress._get_elapsed>, 'elapsed': <property object>, '__dict__': <attribute '__dict__' of 'Progress' objects>, '__weakref__': <attribute '__weakref__' of 'Progress' objects>})

	

	
__doc__ = 'Generic progress bar for python, IPython, IPython notebook\n\n ::\n\n from easydev import Progress\n pb = Progress(100, interval=1)\n pb.animate(10)\n '

	

	
__module__ = 'smrt.core.progressbar'

	

	
__weakref__

	list of weak references to the object (if defined)

smrt.core.result module

The results of RT Solver are hold by the Result class. This class provides several functions
to access to the Stokes Vector and Muller matrix in a simple way. Most notable ones are Result.TbV() and Result.TbH()
for the passive mode calculations and Result.sigmaHH() and Result.sigmaVV(). Result.to_dataframe() is also
very convenient for the sensors with a channel map (all specific satellite sensors have such a map,
only generic sensors as smrt.sensor_list.active() and smrt.sensor_list.passive() does not provide a map by default).

In addition, the RT Solver stores some information in Result.other_data. Currently this includes the effective_permittivity,
ks and ka for each layer. The data are accessed directly with e.g. result.other_data[‘ks’].

To save results of calculations in a file, simply use the pickle module or other serialization schemes. We may provide a unified and
inter-operable solution in the future.

Under the hood, Result uses xarray module which provides multi-dimensional array with explicit, named, dimensions. Here the
common dimensions are frequency, polarization, polarization_inc, theta_inc, theta, and phi. They are created by the RT Solver. The interest

of using named dimension is that slice of the xarray (i.e. results) can be selected based on the dimension name whereas with numpy the order
of the dimensions matters. Because this is very convenient, users may be interested in adding other dimensions specific to their context such

as time, longitude, latitude, points, … To do so, smrt.core.model.Model.run() accepts a list of snowpack and optionally
the parameter snowpack_dimension is used to specify the name and values of the new dimension to build.

Example:

times = [datetime(2012, 1, 1), datetime(2012, 1, 5), , datetime(2012, 1, 10)]
snowpacks = [snowpack_1jan, snowpack_5jan, snowpack_10jan]

res = model.run(sensor, snowpacks, snowpack_dimension=('time', times))

The res variable is a Result instance, so that for all the methods of this class that can be called, they will return a timeseries.
For instance result.TbV(theta=53) returns a time-series of brightness temperature at V polarization and 53° incidence angle and the following code
plots this timeseries:

plot(times, result.TbV(theta=53))

	
open_result(filename)

	read a result save to disk. See Result.save() method.

	
make_result(sensor, *args, **kwargs)

	create an active or passive result object according to the mode

	
class Result(intensity, coords=None, channel_map=None, other_data={}, mother_df=None)

	Bases: object

Contains the results of a/many computations and provides convenience functions to access these results

Construct results array with the given intensity array (numpy array or xarray) and dimensions if numpy array is given

	
__init__(intensity, coords=None, channel_map=None, other_data={}, mother_df=None)

	Construct results array with the given intensity array (numpy array or xarray) and dimensions if numpy array is given

	
coords

	Return the coordinates of the result (theta, frequency, …). Note that the coordinates are also result attribute,
so result.frequency works (and so on for all the coordinates).

	
__getattr__(attr)

	

	
save(filename)

	save a result to disk. Under the hood, this is a netCDF file produced by xarray (http://xarray.pydata.org/en/stable/io.html).

	
sel_data(channel=None, **kwargs)

	

	
return_as_dataframe(name, channel_axis=None, **kwargs)

	

	
to_series(**kwargs)

	return the result as a series with the channels defined in the sensor as index.
This requires that the sensor has declared a channel list.

	
__dict__ = mappingproxy({'__module__': 'smrt.core.result', '__doc__': ' Contains the results of a/many computations and provides convenience functions to access these results\n\n ', '__init__': <function Result.__init__>, 'coords': <property object>, '__getattr__': <function Result.__getattr__>, 'save': <function Result.save>, 'sel_data': <function Result.sel_data>, 'return_as_dataframe': <function Result.return_as_dataframe>, 'to_series': <function Result.to_series>, '__dict__': <attribute '__dict__' of 'Result' objects>, '__weakref__': <attribute '__weakref__' of 'Result' objects>})

	

	
__doc__ = ' Contains the results of a/many computations and provides convenience functions to access these results\n\n '

	

	
__module__ = 'smrt.core.result'

	

	
__weakref__

	list of weak references to the object (if defined)

	
class PassiveResult(intensity, coords=None, channel_map=None, other_data={}, mother_df=None)

	Bases: smrt.core.result.Result

Construct results array with the given intensity array (numpy array or xarray) and dimensions if numpy array is given

	
mode = 'P'

	

	
sel_data(channel=None, **kwargs)

	

	
Tb(channel=None, **kwargs)

	Return brightness temperature. Any parameter can be added to slice the results (e.g. frequency=37e9 or polarization=’V’).
See xarray slicing with sel method (to document). It is also posisble to select by channel if the sensor has a channel_map.

	Parameters

	
	channel – channel to select

	**kwargs – any parameter to slice the results.

	
Tb_as_dataframe(channel_axis=None, **kwargs)

	See PassiveResult().to_dataframe

	
to_dataframe(channel_axis='auto', **kwargs)

	Return brightness temperature as a pandas.DataFrame. Any parameter can be added to slice the results
(e.g. frequency=37e9 or polarization=’V’). See xarray slicing with sel method (to document).
In addition channel_axis controls the format of the output. If set to None, the DataFrame has a multi-index with all the
dimensions (frequency, polarization, …).
If channel_axis is set to “column”, and if the sensor has a channel map, the channels are
in columns and the other dimensions are in index. If set to “index”, the channel are in index with all the other dimensions.

The most conviennent is probably channel_axis=”column” while channel_axis=None (default) contains all the data even those
not corresponding to a channel and applies to any sensor even those without channel_map. If set to “auto”,
the channel_axis is “column” if the channel map exit, otherwise is None.

	Parameters

	channel_axis – controls whether to use the sensor channel or not and if yes, as a column or index.

	
TbV(**kwargs)

	Return V polarization. Any parameter can be added to slice the results (e.g. frequency=37e9).
See xarray slicing with sel method (to document)

	
TbH(**kwargs)

	Return H polarization. Any parameter can be added to slice the results (e.g. frequency=37e9).
See xarray slicing with sel method (to document)

	
polarization_ratio(ratio='H_V', **kwargs)

	Return polarization ratio. Any parameter can be added to slice the results (e.g. frequency=37e9).
See xarray slicing with sel method (to document)

	
__doc__ = None

	

	
__module__ = 'smrt.core.result'

	

	
class ActiveResult(intensity, coords=None, channel_map=None, other_data={}, mother_df=None)

	Bases: smrt.core.result.Result

Construct results array with the given intensity array (numpy array or xarray) and dimensions if numpy array is given

	
mode = 'A'

	

	
sel_data(channel=None, return_backscatter=False, **kwargs)

	

	
sigma(channel=None, **kwargs)

	Return backscattering coefficient. Any parameter can be added to slice the results (e.g. frequency=37e9 or polarization=’V’).
See xarray slicing with sel method (to document). It is also posisble to select by channel if the sensor has a channel_map.

	Parameters

	
	channel – channel to select

	**kwargs – any parameter to slice the results.

	
sigma_dB(channel=None, **kwargs)

	Return backscattering coefficient. Any parameter can be added to slice the results (e.g. frequency=37e9,
polarization_inc=’V’, polarization=’V’). See xarray slicing with sel method (to document)

	
sigma_as_dataframe(channel_axis=None, **kwargs)

	Return backscattering coefficient as a pandas.DataFrame. Any parameter can be added to slice the results
(e.g. frequency=37e9 or polarization=’V’). See xarray slicing with sel method (to document).
In addition channel_axis controls the format of the output. If set to None, the DataFrame has a multi-index formed with all the
dimensions (frequency, polarization, …).
If channel_axis is set to “column”, and if the sensor has named channels (channel_map in SMRT wording), the channel are
in columns and the other dimensions are in index. If set to “index”, the channel are in index with all the other dimensions.

The most conviennent is probably channel_axis=”column” while channel_axis=None (default) contains all the data even those
not corresponding to a channel and applies to any sensor even those without channel_map.

	Parameters

	channel_axis – controls whether to use the sensor channel or not and if yes, as a column or index.

	
sigma_dB_as_dataframe(channel_axis=None, **kwargs)

	See ActiveResult().to_dataframe

	
to_dataframe(channel_axis=None, **kwargs)

	Return backscattering coefficient in dB as a pandas.DataFrame. Any parameter can be added to slice the results
(e.g. frequency=37e9 or polarization=’V’). See xarray slicing with sel method (to document).
In addition channel_axis controls the format of the output. If set to None, the DataFrame has a multi-index with all the
dimensions (frequency, polarization, …).
If channel_axis is set to “column”, and if the sensor has named channels (channel_map in SMRT wording), the channel are
in columns and the other dimensions are in index. If set to “index”, the channel are in index with all the other dimensions.

If channel_axis is set to “column”, and if the sensor has a channel map, the channels are
in columns and the other dimensions are in index. If set to “index”, the channel are in index with all the other dimensions.

The most conviennent is probably channel_axis=”column” while channel_axis=None (default) contains all the data even those
not corresponding to a channel and applies to any sensor even those without channel_map. If set to “auto”,
the channel_axis is “column” if the channel map exit, otherwise is None.

	Parameters

	channel_axis – controls whether to use the sensor channel or not and if yes, as a column or index.

	
to_series(**kwargs)

	return backscattering coefficients in dB as a series with the channels defined in the sensor as index.
This requires that the sensor has declared a channel list.

	
sigmaVV(**kwargs)

	Return VV backscattering coefficient. Any parameter can be added to slice the results (e.g. frequency=37e9).
See xarray slicing with sel method (to document)

	
sigmaVV_dB(**kwargs)

	Return VV backscattering coefficient in dB. Any parameter can be added to slice the results (e.g. frequency=37e9).
See xarray slicing with sel method (to document)

	
sigmaHH(**kwargs)

	Return HH backscattering coefficient. Any parameter can be added to slice the results (e.g. frequency=37e9).
See xarray slicing with sel method (to document)

	
sigmaHH_dB(**kwargs)

	Return HH backscattering coefficient in dB. Any parameter can be added to slice the results (e.g. frequency=37e9).
See xarray slicing with sel method (to document)

	
sigmaHV(**kwargs)

	Return HV backscattering coefficient. Any parameter can be added to slice the results (e.g. frequency=37e9).
See xarray slicing with sel method (to document)

	
sigmaHV_dB(**kwargs)

	Return HV backscattering coefficient in dB. Any parameter can be added to slice the results (e.g. frequency=37e9).
See xarray slicing with sel method (to document)

	
sigmaVH(**kwargs)

	Return VH backscattering coefficient. Any parameter can be added to slice the results (e.g. frequency=37e9).
See xarray slicing with sel method (to document)

	
sigmaVH_dB(**kwargs)

	Return VH backscattering coefficient in dB. Any parameter can be added to slice the results (e.g. frequency=37e9).
See xarray slicing with sel method (to document)

	
__doc__ = None

	

	
__module__ = 'smrt.core.result'

	

	
concat_results(result_list, coord)

	Concatenate several results from smrt.core.model.Model.run() (of type Result) into a single result
(of type Result). This extends the number of dimension in the xarray hold by the instance. The new dimension
is specified with coord

	Parameters

	
	result_list – list of results returned by smrt.core.model.Model.run() or other functions.

	coord – a tuple (dimension_name, dimension_values) for the new dimension. Dimension_values must be a sequence or

array with the same length as result_list.

	Returns

	Result instance

	
_strongsqueeze(x)

	

smrt.core.run_promise module

	
honour_all_promises(directory_or_filename, save_result_to=None, show_progress=True, force_compute=True)

	Honour many promises and save the results

	Parameters

	
	directory_or_filename – can be a directory, a filename or a list of them

	save_result_to – directory where to save the results. If None, the results are not saved. The results are always returned as a list by this function.

	show_progress – print progress of the calculation.

	force_computate – If False and if a result or lock file is present, the computation is skipped. The order of promise processing is randomized
to allow more efficient parallel computation using many calls of this function on the same directory. A lock file is used between the start of a computation and
writting the result in order to prevent from running several times the same computation. If the process is interupted (e.g. walltime on clusters), the lock file may persist and prevent any future computation. In this case,
lock files must be manually deleted.
IF False, the save_result_to argument must be set to a valid directory where the results.

	
honour_promise(filename, save_result_to=None, force_compute=True)

	Honour a promise and optionally save the result.

	Parameters

	
	filename – file name of the promise

	save_result_to – directory where to save the result.

	force_compute – see honour_all_promise.

	
load_promise(filename)

	

	
class RunPromise(model, sensor, snowpack, kwargs)

	Bases: object

	
__init__(model, sensor, snowpack, kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
run()

	

	
save(directory=None, filename=None)

	

	
__dict__ = mappingproxy({'__module__': 'smrt.core.run_promise', '__init__': <function RunPromise.__init__>, 'run': <function RunPromise.run>, 'save': <function RunPromise.save>, '__dict__': <attribute '__dict__' of 'RunPromise' objects>, '__weakref__': <attribute '__weakref__' of 'RunPromise' objects>, '__doc__': None})

	

	
__doc__ = None

	

	
__module__ = 'smrt.core.run_promise'

	

	
__weakref__

	list of weak references to the object (if defined)

smrt.core.sensitivity_study module

SensitivityStudy is used to easily conduct sensitivity studies.

Example:

times = [datetime(2012, 1, 1), datetime(2012, 1, 5), , datetime(2012, 1, 10)]
snowpacks = SensitivityStudy("time", times, [snowpack_1jan, snowpack_5jan, snowpack_10jan])

res = model.run(sensor, snowpacks)

The res variable is a Result instance, so that for all the methods of this class that can be called, they will return a timeseries.
For instance result.TbV(theta=53) returns a time-series of brightness temperature at V polarization and 53° incidence angle and the following code
plots this timeseries:

plot(times, result.TbV(theta=53))

	
class SensitivityStudy(name, values, snowpacks)

	Bases: object

	
__init__(name, values, snowpacks)

	Initialize self. See help(type(self)) for accurate signature.

	
__getitem__(key)

	

	
__dict__ = mappingproxy({'__module__': 'smrt.core.sensitivity_study', '__init__': <function SensitivityStudy.__init__>, '__getitem__': <function SensitivityStudy.__getitem__>, '__dict__': <attribute '__dict__' of 'SensitivityStudy' objects>, '__weakref__': <attribute '__weakref__' of 'SensitivityStudy' objects>, '__doc__': None})

	

	
__doc__ = None

	

	
__module__ = 'smrt.core.sensitivity_study'

	

	
__weakref__

	list of weak references to the object (if defined)

	
sensitivity_study(name, values, snowpacks)

	create a sensitivity study

	Parameters

	
	name – name of the variable to investigate

	values – values taken by the variable

	snowpacks – list of snowpacks. Can be a sequence or a function that takes one argument and return a snowpack.

In the latter case, the function is called for each values to build the list of snowpacks

smrt.core.sensor module

The sensor configuration includes all the information describing the sensor viewing geometry (incidence, …)
and operating parameters (frequency, polarization, …). The easiest and recommended way to create a Sensor instance is
to use one of the convenience functions such as passive(), active(), amsre(), etc.
Adding a function for a new or unlisted sensor can be done in sensor_list if the sensor is common and of general interest.
Otherwise, we recommend to add these functions in your own files (outside of smrt directories).

	
passive(frequency, theta, polarization=None, channel_map=None, name=None)

	Generic configuration for passive microwave sensor.

Return a Sensor for a microwave radiometer with given frequency, incidence angle and polarization

	Parameters

	
	frequency – frequency in Hz

	theta – viewing angle or list of viewing angles in degrees from vertical. Note that some RT solvers compute all
viewing angles whatever this configuration because it is internally needed part of the multiple scattering calculation.
It it therefore often more efficient to call the model once with many viewing angles instead of calling it many times
with a single angle.

	polarization (list of characters) – H and/or V polarizations. Both polarizations is the default. Note that most RT solvers compute all
the polarizations whatever this configuration because the polarizations are coupled in the RT equation.

	channel_map (dict) – map channel names (keys) to configuration (values). A configuration is a dict with frequency, polarization and other
such parameters to be used by Result to select the results.

	name (string) – name of the sensor

	Returns

	Sensor instance

Usage example:

from smrt import sensor
radiometer = sensor.passive(18e9, 50)
radiometer = sensor.passive(18e9, 50, "V")
radiometer = sensor.passive([18e9,36.5e9], [50,55], ["V","H"])

	
channel_map_for_radar(frequency=None, polarization='HV', order='fp')

	return a channel_map to convert channel name to frequency and polarization. This function assumes the frequency is coded as a two-digit number
in GHz with leading 0 if necessary. The polarization is after the frequency if order is ‘fp’ and before if order is ‘pf’.

	
active(frequency, theta_inc, theta=None, phi=None, polarization_inc=None, polarization=None, channel_map=None, name=None)

	Configuration for active microwave sensor.

Return a Sensor for a radar with given frequency, incidence and viewing angles and polarization

If polarizations are not specified, quad-pol is the default (VV, VH, HV and HH).
If the angle of incident radiation is not specified, backscatter will be simulated

	Parameters

	
	frequency – frequency in Hz

	theta_inc – incident angle in degrees from the vertical

	theta – viewing zenith angle in degrees from the vertical. By default, it is equal to theta_inc which corresponds
to the backscatter direction

	phi – viewing azimuth angle in degrees from the incident direction. By default, it is pi which corresponds
to the backscatter direction

	polarization_inc (list of 1-character strings) – list of polarizations of the incidence wave (‘H’ or ‘V’ or both.)

	polarization (list of 1-character strings) – list of viewing polarizations (‘H’ or ‘V’ or both)

	channel_map (dict) – map channel names (keys) to configuration (values). A configuration is a dict with frequency, polarization and other
such parameters to be used by Result to select the results.

	name (string) – name of the sensor

	Returns

	Sensor instance

Usage example:

from smrt import sensor
scatterometer = sensor.active(frequency=18e9, theta_inc=50)
scatterometer = sensor.active(18e9, 50, 50, 0, "V", "V")
scatterometer = sensor.active([18e9,36.5e9], theta=50, theta_inc=50, polarization_inc=["V", "H"], polarization=["V", "H"])

	
altimeter(channel, **kwargs)

	

	
make_multi_channel_altimeter(config, channel)

	

	
class SensorBase

	Bases: object

	
__dict__ = mappingproxy({'__module__': 'smrt.core.sensor', '__dict__': <attribute '__dict__' of 'SensorBase' objects>, '__weakref__': <attribute '__weakref__' of 'SensorBase' objects>, '__doc__': None})

	

	
__doc__ = None

	

	
__module__ = 'smrt.core.sensor'

	

	
__weakref__

	list of weak references to the object (if defined)

	
class Sensor(frequency=None, theta_inc_deg=None, theta_deg=None, phi_deg=None, polarization_inc=None, polarization=None, channel_map=None, name=None, wavelength=None)

	Bases: smrt.core.sensor.SensorBase

Configuration for sensor.
Use of the functions passive(), active(), or the sensor specific functions
e.g. amsre() are recommended to access this class.

Build a Sensor. Setting theta_inc to None means passive mode

	Parameters

	
	frequency – Microwave frequency in Hz

	theta_inc_deg – zenith angle in degrees of incident radiation emitted from the active sensor

:param polarization_inc. List of single character (H or V) for the incident wave
:param theta_deg: zenith angle in degrees at which the observation is made
:param phi_deg: azimuth angle at which the observation is made
:param polarization: List of single character (H or V)
:param channel_map: map channel names (keys) to configuration (values). A configuration is a dict with frequency, polarization and other

such parameters to be used by Result to select the results.

	Parameters

	
	name – name of the sensor

	wavelength – wavelength of the sensor. Can be set instead of the frequency.

	
__init__(frequency=None, theta_inc_deg=None, theta_deg=None, phi_deg=None, polarization_inc=None, polarization=None, channel_map=None, name=None, wavelength=None)

	Build a Sensor. Setting theta_inc to None means passive mode

	Parameters

	
	frequency – Microwave frequency in Hz

	theta_inc_deg – zenith angle in degrees of incident radiation emitted from the active sensor

:param polarization_inc. List of single character (H or V) for the incident wave
:param theta_deg: zenith angle in degrees at which the observation is made
:param phi_deg: azimuth angle at which the observation is made
:param polarization: List of single character (H or V)
:param channel_map: map channel names (keys) to configuration (values). A configuration is a dict with frequency, polarization and other

such parameters to be used by Result to select the results.

	Parameters

	
	name – name of the sensor

	wavelength – wavelength of the sensor. Can be set instead of the frequency.

	
wavelength

	

	
wavenumber

	

	
mode

	“A” for active or “P” for passive.

	Type

	returns the mode of observation

	
basic_checks()

	

	
configurations()

	

	
iterate(axis)

	Iterate over the configuration for the given axis.

	Parameters

	axis – one of the attribute of the sensor (frequency, …) to iterate along

	
__doc__ = ' Configuration for sensor.\n Use of the functions :py:func:`passive`, :py:func:`active`, or the sensor specific functions\n e.g. :py:func:`amsre` are recommended to access this class.\n\n '

	

	
__module__ = 'smrt.core.sensor'

	

	
class SensorList(sensor_list, axis='channel')

	Bases: smrt.core.sensor.SensorBase

	
__init__(sensor_list, axis='channel')

	Initialize self. See help(type(self)) for accurate signature.

	
channel

	

	
frequency

	

	
configurations()

	

	
iterate(axis=None)

	

	
__doc__ = None

	

	
__module__ = 'smrt.core.sensor'

	

	
class Altimeter(frequency, altitude, beamwidth, pulse_bandwidth, sigma_p=None, off_nadir_angle=0, beam_asymmetry=0, ngate=1024, nominal_gate=40, theta_inc_deg=0.0, polarization_inc=None, polarization=None, channel=None)

	Bases: smrt.core.sensor.Sensor

Configuration for altimeter.
Use of the functions altimeter(), or the sensor specific functions
e.g. envisat_ra2() are recommended to access this class.

	
__init__(frequency, altitude, beamwidth, pulse_bandwidth, sigma_p=None, off_nadir_angle=0, beam_asymmetry=0, ngate=1024, nominal_gate=40, theta_inc_deg=0.0, polarization_inc=None, polarization=None, channel=None)

	Build a Sensor. Setting theta_inc to None means passive mode

	Parameters

	
	frequency – Microwave frequency in Hz

	theta_inc_deg – zenith angle in degrees of incident radiation emitted from the active sensor

:param polarization_inc. List of single character (H or V) for the incident wave
:param theta_deg: zenith angle in degrees at which the observation is made
:param phi_deg: azimuth angle at which the observation is made
:param polarization: List of single character (H or V)
:param channel_map: map channel names (keys) to configuration (values). A configuration is a dict with frequency, polarization and other

such parameters to be used by Result to select the results.

	Parameters

	
	name – name of the sensor

	wavelength – wavelength of the sensor. Can be set instead of the frequency.

	
__doc__ = ' Configuration for altimeter.\n Use of the functions :py:func:`altimeter`, or the sensor specific functions\n e.g. :py:func:`envisat_ra2` are recommended to access this class.\n\n '

	

	
__module__ = 'smrt.core.sensor'

	

smrt.core.snowpack module

Snowpack instance contains the description of the snowpack, including a list of layers and interfaces between the layers, and the substrate (soil, ice, …).

To create a snowpack, it is recommended to use the make_snowpack() function which avoids the complexity of creating
each layer and then the snowpack from the layers. For more complex media (like lake ice or sea ice), it may be necessary to directly call the functions
to create the different layers (such as make_snow_layer()).

Example:

create a 10-m thick snowpack with a single layer,
density is 350 kg/m3. The exponential autocorrelation function is
used to describe the snow and the "size" parameter is therefore
the correlation length which is given as an optional
argument of this function (but is required in practice)

sp = make_snowpack([10], "exponential", [350], corr_length=[3e-3])

	
class Snowpack(layers=None, interfaces=None, substrate=None, atmosphere=None)

	Bases: object

holds the description of the snowpack, including the layers, interfaces, and the substrate

	
__init__(layers=None, interfaces=None, substrate=None, atmosphere=None)

	Initialize self. See help(type(self)) for accurate signature.

	
nlayer

	return the number of layers

	
layer_thicknesses

	return the thickness of each layer

	
layer_depths

	return the depth of the bottom of each layer

	
bottom_layer_depths

	return the depth of the bottom of each layer

	
top_layer_depths

	return the depth of the bottom of each layer

	
mid_layer_depths

	return the depth of the bottom of each layer

	
z

	return the depth of each interface, that is, 0 and the depth of the bottom of each layer

	
layer_densities

	return the density of each layer

	
profile(property_name, where='all', raise_attributeerror=False)

	return the vertical profile of property_name. The property is searched either in the layer, microstructure or interface.

	Parameters

	
	property_name – name of the property

	where – where to search the property. Can be ‘all’, ‘layer’, ‘microstructure’, or ‘interface’

	raise_attributeerror – raise an attribute error if the attribute is not found

	
append(layer, interface=None)

	append a new layer at the bottom of the stack of layers. The interface is that at the top of the appended layer.

	Parameters

	
	layer – instance of Layer

	interface – type of interface. By default, flat surface (Flat) is considered meaning the coefficients are calculated with Fresnel coefficient
and using the effective permittivity of the surrounding layers

	
delete(ilayer)

	delete a layer and the upper interface

	Parameters

	ilayer – index of the layer

	
copy()

	make a shallow copy of a snowpack by copying the list of layers and interfaces but not the layers and interfaces themselves which are still shared with the original snowpack.
This method allows the user to create a new snowpack and remove, append or replace some layers or interfaces afterward. It does not allow to alter the layers or interfaces without
changing the original snowpack. See py:meth:~deepcopy.

	
deepcopy()

	make a deep copy of a snowpack.

	
basic_check()

	

	
check_addition_validity(other)

	

	
update_layer_number()

	

	
__add__(other)

	Return a new snowpack made of the first snowpack (or layer) stacked on top of the second snowpack (or layer or substrate).

Note

if a layer is added on top (at bottom), the top (bottom) interface is duplicated.

	Parameters

	other – the snowpack, a layer or a substrate to add to the first argument.

	Example

	

duplicate the top layer:
newsp = sp.layers[0] + wetsp

	
__radd__(other)

	

	
__iadd__(other)

	Inplace addition of object to snowpack. See __add__() description.

	
to_dataframe(default_columns=True, other_columns=None)

	

	
__repr__()

	Return repr(self).

	
_repr_html_()

	use by IPython notebook to display a snowpack in a pretty format

	
__dict__ = mappingproxy({'__module__': 'smrt.core.snowpack', '__doc__': 'holds the description of the snowpack, including the layers, interfaces, and the substrate\n\n', '__init__': <function Snowpack.__init__>, 'nlayer': <property object>, 'layer_thicknesses': <property object>, 'layer_depths': <property object>, 'bottom_layer_depths': <property object>, 'top_layer_depths': <property object>, 'mid_layer_depths': <property object>, 'z': <property object>, 'layer_densities': <property object>, 'profile': <function Snowpack.profile>, 'append': <function Snowpack.append>, 'delete': <function Snowpack.delete>, 'copy': <function Snowpack.copy>, 'deepcopy': <function Snowpack.deepcopy>, 'basic_check': <function Snowpack.basic_check>, 'check_addition_validity': <function Snowpack.check_addition_validity>, 'update_layer_number': <function Snowpack.update_layer_number>, '__add__': <function Snowpack.__add__>, '__radd__': <function Snowpack.__radd__>, '__iadd__': <function Snowpack.__iadd__>, 'to_dataframe': <function Snowpack.to_dataframe>, '__repr__': <function Snowpack.__repr__>, '_repr_html_': <function Snowpack._repr_html_>, '__dict__': <attribute '__dict__' of 'Snowpack' objects>, '__weakref__': <attribute '__weakref__' of 'Snowpack' objects>})

	

	
__doc__ = 'holds the description of the snowpack, including the layers, interfaces, and the substrate\n\n'

	

	
__module__ = 'smrt.core.snowpack'

	

	
__weakref__

	list of weak references to the object (if defined)

smrt.core.test_globalconstants module

smrt.core.test_interface module

smrt.core.test_layer module

smrt.core.test_lib module

	
setup_func_sp()

	

	
setup_func_em(testpack=None)

	

smrt.core.test_result module

smrt.core.test_sensor module

smrt.core.test_snowpack module

	
create_two_snowpacks()

	

Module contents

The core package contains the SMRT machinery. It provides the infrastructure that provides basic objects and orchestrates the “science” modules in the
other packages (such as smrt.emmodel or smrt.rtsolver).

Amongst all, we suggest looking at the documentation of the Result object.

For developers

We strongly warn against changing anything in this directory. In principle this is not needed because no “science” is present
and most objects and functions are generic enough to be extendable from outside (without affecting the core definition). Ask
advice from the authors if you really want to change something here.

smrt.utils package

Submodules

smrt.utils.dmrt_qms_legacy module

Wrapper to the original DMRT_QMS matlab code using the SMRT framework. To use this module, extra installation are needed:

	get DMRT_QMS from http://web.eecs.umich.edu/~leutsang/Available%20Resources.html and extract the model somewhere

	install the oct2py module using pip install oct2py or easy_install install oct2py

	install Octave version 3.6 or above.

	for convenience you can set the DMRT_QMS_DIR environment variable to point to DMRT-QMS path. This path can also be programmatically set with and use set_dmrt_qms_path() function.

In case of problem check the instructions given in http://blink1073.github.io/oct2py/source/installation.html

You may also want to increase the number of streams in passive/DMRT_QMS_passive.m

	
set_dmrt_qms_path(path)

	set the path where dmrt_qms archive has been uncompressed, i.e. where the file dmrt_qmsmain.m is located.

	
run(sensor, snowpack, dmrt_qms_path=None, snowpack_dimension=None, full_output=False)

	call DMRT-QMS for the snowpack and sensor configuration given as argument. The sticky_hard_spheres microstructure model
must be used.

	Parameters

	
	snowpack – describe the snowpack.

	sensor – describe the sensor configuration.

	full_output – determine if ks, ka and effective permittivity are return in addition to the result object

	
dmrt_qms_active(sensor, snowpack)

	

	
dmrt_qms_emmodel(sensor, layer, dmrt_qms_path=None)

	Compute scattering and absorption coefficients using DMRT QMS

	Parameters

	
	layer – describe the layer.

	sensor – describe the sensor configuration.

smrt.utils.hut_legacy module

Wrapper to original HUT matlab using SMRT framework. To use this module, extra installation are needed:

	get HUT. Decompress the archive somewhere on your disk.

	in the file snowemis_nlayers change the 6 occurences of the “do” variable into “dos” because it causes a syntax error in Octave.

	install the oct2py module using pip install oct2py or easy_install install oct2py.

	install Octave version 3.6 or above.

	for convenience you can set the HUT_DIR environment variable to point to HUT path. This path can also be programmatically set with set_hut_path().

In case of problem check the instructions given in http://blink1073.github.io/oct2py/source/installation.html

	
set_hut_path(path)

	set the path where MEMLS archive has been uncompressed, i.e. where the file memlsmain.m is located.

	
run(sensor, snowpack, ke_option=0, grainsize_option=1, hut_path=None)

	call HUT for the snowpack and sensor configuration given as argument. Any microstructure model that defines the “radius” parameter
is valid.

	Parameters

	
	snowpack – describe the snowpack.

	sensor – describe the sensor configuration.

	ke_option – see HUT snowemis_nlayers.m code

	grainsize_option – see HUT snowemis_nlayers.m code

smrt.utils.memls_legacy module

Wrapper to the original MEMLS matlab code using the SMRT framework. To use this module, extra installation are needed:

	download MEMLS from http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html. Decompress the archive somewhere on your disk.

	install the oct2py module using pip install oct2py or easy_install install oct2py

	install Octave version 3.6 or above.

	for convenience you can set the MEMLS_DIR environment variable to point to MEMLS path. This path can also be programmatically set with set_memls_path()

In case of problem check the instructions given in http://blink1073.github.io/oct2py/source/installation.html

	
set_memls_path(path)

	set the path where MEMLS archive has been uncompressed, i.e. where the file memlsmain.m is located.

	
run(sensor, snowpack, scattering_choice=12, atmosphere=None, memls_path=None, memls_driver=None, snowpack_dimension=None)

	call MEMLS for the snowpack and sensor configuration given as argument. Any microstructure model that defines the “corr_length” parameter
is valid, but it must be clear that MEMLS only considers exponential autocorrelation.

	Parameters

	
	snowpack – describe the snowpack.

	sensor – describe the sensor configuration.

	scattering_choice – MEMLS proposes several formulation to compute scattering_function. scattering_choice=ABORN (equals 12) is the default
here and is recommended choice to compare with IBA. Note that some comments in memlsmain.m suggest to use
scattering_choice=MEMLS_RECOMMENDED (equals 11). Note also that the default grain type in memlsmain is graintype=1
corresponding to oblate spheroidal calculation of effective permittivity from the empirical representation of depolarization factors. To use a Polder-Van Santen representation of effective permittivity for small spheres, graintype=2 must be set in your local copy of MEMLS.

	atmosphere – describe the atmosphere. Only tbdown is used for the Tsky argument of memlsmain.

	memls_path – directory path to the memls Matlab scripts

	memls_driver – matlab function to call to run memls. memlsmain.m is the default driver in the original MEMLS distribution for the passive case and amemlsmain.m for the active case.

	snowpack_dimension – name and values (as a tuple) of the dimension to create for the results when a list of snowpack is provided. E.g. time, point, longitude, latitude. By default the dimension is called ‘snowpack’ and the values are from 1 to the number of snowpacks.

	
memls_emmodel(sensor, layer, scattering_choice=12, graintype=2)

	Compute scattering (gs6) and absorption coefficients (gai) using MEMLS

	Parameters

	
	layer – describe the layer.

	sensor – describe the sensor configuration.

	scattering_choice – MEMLS proposes several formulation to compute scattering_function. scattering_choice=ABORN (equals 12) is the defaut here and is recommended choice to compare with IBA.

smrt.utils.mpl_plots module

	
plot_snowpack(sp, show_vars=None, show_shade=False, ax=None)

	

	
plot_streams(sp, emmodel, sensor, ilayer=None, ax=None)

	

	
format_vars(lay, show_vars, delimiter=' ')

	

	
class CosineComputor

	Bases: object

	
solve(snowpack, emmodel_instances, sensor, atmosphere)

	

	
__dict__ = mappingproxy({'__module__': 'smrt.utils.mpl_plots', 'solve': <function CosineComputor.solve>, '__dict__': <attribute '__dict__' of 'CosineComputor' objects>, '__weakref__': <attribute '__weakref__' of 'CosineComputor' objects>, '__doc__': None})

	

	
__doc__ = None

	

	
__module__ = 'smrt.utils.mpl_plots'

	

	
__weakref__

	list of weak references to the object (if defined)

	
class ReciprocalScale(axis)

	Bases: matplotlib.scale.LinearScale

	
name = 'stickiness_reciprocal'

	

	
set_default_locators_and_formatters(axis)

	Set the locators and formatters of axis to instances suitable for
this scale.

	
get_transform()

	Return the transform for linear scaling, which is just the
~matplotlib.transforms.IdentityTransform.

	
class ReciprocalTransform(shorthand_name=None)

	Bases: matplotlib.transforms.Transform

	Parameters

	shorthand_name (str) – A string representing the “name” of the transform. The name carries
no significance other than to improve the readability of
str(transform) when DEBUG=True.

	
input_dims = 1

	

	
output_dims = 1

	

	
is_separable = True

	

	
transform_non_affine(a)

	Apply only the non-affine part of this transformation.

transform(values) is always equivalent to
transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to
transform(values). In affine transformations, this is
always a no-op.

	Parameters

	values (array) – The input values as NumPy array of length input_dims or
shape (N x input_dims).

	Returns

	The output values as NumPy array of length output_dims or
shape (N x output_dims), depending on the input.

	Return type

	array

	
inverted()

	Return the corresponding inverse transformation.

It holds x == self.inverted().transform(self.transform(x)).

The return value of this method should be treated as
temporary. An update to self does not cause a corresponding
update to its inverted copy.

	
__doc__ = None

	

	
__module__ = 'smrt.utils.mpl_plots'

	

	
has_inverse = True

	

	
class InvertedReciprocalTransform(shorthand_name=None)

	Bases: matplotlib.transforms.Transform

	Parameters

	shorthand_name (str) – A string representing the “name” of the transform. The name carries
no significance other than to improve the readability of
str(transform) when DEBUG=True.

	
input_dims = 1

	

	
output_dims = 1

	

	
is_separable = True

	

	
transform_non_affine(a)

	Apply only the non-affine part of this transformation.

transform(values) is always equivalent to
transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to
transform(values). In affine transformations, this is
always a no-op.

	Parameters

	values (array) – The input values as NumPy array of length input_dims or
shape (N x input_dims).

	Returns

	The output values as NumPy array of length output_dims or
shape (N x output_dims), depending on the input.

	Return type

	array

	
inverted()

	Return the corresponding inverse transformation.

It holds x == self.inverted().transform(self.transform(x)).

The return value of this method should be treated as
temporary. An update to self does not cause a corresponding
update to its inverted copy.

	
__doc__ = None

	

	
__module__ = 'smrt.utils.mpl_plots'

	

	
has_inverse = True

	

	
__doc__ = None

	

	
__module__ = 'smrt.utils.mpl_plots'

	

smrt.utils.repo_tools module

General tools related to code repository

	
get_hg_rev(file_path)

	get_hg_rev is a tool to print out which commit of the model you are using.

This is useful when revisiting ipython notebooks, can be used to compare the original
model commit ID with the latest version.

Usage:

from smrt.utils.repo_tools import get_hg_rev
path_to_file = "/path/to/your/repository"
get_hg_rev(path_to_file)

Note

This is for a mercurial repository

Module contents

This packages contain various utilities that works with/for SMRT.

The wrappers to legacy snow radiative transfer models can be used to run DMRT-QMS (passive mode), HUT and MEMLS (passive mode).
Other tools are listed below.

	
dB(x)

	computes the ratio x in dB.

	
invdB(x)

	computes the dB value x in natural value.

Guidelines for Developers

At the moment this is an organic document to collect all the model design and developer style decisions. This will also
include information on how to get started with useful developer tools. At the moment, it contains personal experience of installing and using these tools although these may be removed if they do not appear to be useful to others.

These guidelines will be turned into a formal document towards the end of the project.

Use of import statements

Good rules for python imports [http://stackoverflow.com/questions/193919/what-are-good-rules-of-thumb-for-python-imports]

In short:

	use fully qualified names

	from blabla import * should never be used.

	from blabla import passive should be avoided in SMRT but can be used in user code.

	keep at least the module e.g. “from smrt import sensor_list” is the best compromise.

	use “as” with moderation and everyone should agree to use it.

	but import numpy as np is good.

	to start, we will use an explicit import at the top of the driver file, making the code more cumbersome, but may later consider a plugin framework to do the import and introspection in a nice way.

Note: it’s part of the Google Python style guides that
all imports must import a module, not a class or function from that
module. There are way more classes and functions than there are modules,
so recalling where a particular thing comes from is much easier if it is
prefixed with a module name. Often multiple modules happen to define
things with the same name – so a reader of the code doesn’t have to go
back to the top of the file to see from which module a given name is
imported.

Python

Python was chosen because of its growing use in the scientific community and higher flexibility than compiled legacy languages like FORTRAN. This enables the model to be modular much more easily, which is a main constraint of the project, allows faster development and an easier exploration of new ideas. The performance should not be an issue as the time consuming part of the model should be localized in the RT solver and numerical integrations which uses the highly optimized scipy module facility that basically uses BLAS, LAPACK and MINPACK libraries as would be done in FORTRAN. Compilation of the Python code with Numba or Pypy will be considered in case of performance issues later in the project or even more probably after. Parallelization could be done later e.g. through joblib module.

The model in the framework of the current project mainly aims at exploring new ideas involving the microstructure and tests various modelling solutions. It is quite likely that operational needs (especially very intensive ones) will require rewritting a selected subset of the model.

Python versions

The target version is Python 3.4+ which is better optimized and is the only supported version in the future (after 2020) with the use of a subset syntax to ensure compatibility with the lastest 2.7.x and PyPy. It means in practice that the model will be compatible with the last 2.7.x version but is “ready” for Python 3 and later. For this “__future__” directives and six module will be used. The tests must pass the two versions. This choice is overall a weak constraint for developers and big asset for users.

Anaconda is probably the easiest way to install python, especially when several versions are needed. See also Installing multiple versions of python [http://stackoverflow.com/questions/2547554/official-multiple-python-versions-on-the-same-machine] is system dependent and also depends on your preferred install method [http://stackoverflow.com/questions/2812520/pip-dealing-with-multiple-python-versions].

Perhaps it’s not strictly necessary to follow all steps, but I followed these instructions for Mac OSX [https://iainhunter.wordpress.com/2012/11/08/howto-install-python3-pip3-tornado-on-mac/] to install python 3.5. Then pip installs
packages into python 2.7 and pip3 installs packages into python 3.5. Note on Tcl/Tk for Mac OSX [https://www.python.org/download/mac/tcltk/]. I have installed ActiveTcl 8.6.4 and am keeping my fingers crossed that these changes have not broken anything…I have subsequently installed python 3.4.3. This means that python3 will run version 3.4.3 by default. It doesn’t seem trivial to get python3 to point back to python 3.5, but that’s probably ok as the target version is 3.4, and it will be worth testing for 3.5 alongside.

tox: testing multiple python versions

The tox package [https://tox.readthedocs.org/en/latest/] allows multiple versions of python to be tested. Although not clear whether this needs to be installed in python 2 or 3, I installed with pip rather than pip3 and trust that it will take care of everything. This seems to work fine.

The setup to run tox is contained in the tox.ini file. At the moment this is setup for nosetests against python versions 2.7, 3.4 and 3.5. Also, at present tox.ini does not require a setup.py to run [http://stackoverflow.com/questions/18962403/how-do-i-run-tox-in-a-project-that-has-no-setup-py]. Once the model is fully operational the line skipsdist = True should be deleted, or this parameter set to False. Note that all modules to be imported need to be listed in the dependencies (deps) in the tox.ini file. An ImportError may indicate that the module it is trying to import has not been included in the tox.ini.

To run the nosetests for all the different versions, using the installed tox package, simply type:

tox

If you want to test for only one python version, type e.g:

tox -e py27

setup.py

This is needed in order to build, install and distribute the model through Distutils (instructions [https://docs.python.org/2/distutils/setupscript.html]). To be done for the public release.

bug correction

Every bug should result in writing a test.

Classes

If the compulsary argument list becomes too long (say 4?), use optional arguments to make things easier to read.

Guidelines on number of parameters a function should take [http://programmers.stackexchange.com/questions/145055/are-there-guidelines-on-how-many-parameters-a-function-should-accept].

Merge two objects in python [http://byatool.com/lessons/simple-property-merge-for-python-objects/].

PEP008

Code must conform to PEP8 [https://www.python.org/dev/peps/pep-0008/] - with the exception that lines of up to 140 characters are allowed and extra space are allowed in long formula for readability. Particular points of note:

	4 spaces for the indentation.

	one space after comma and around operators.

	all names (variable, function, …) are meaningful. Abbreviations are used in a very limited number of cases.

	function names are lowercase only and word a spaced by underscore.

	Constants are usually defined on a module level and written in all capital letters with underscores separating words

You can check for PEP8 compliance automatically with nosetests. To do this, install tissue [https://code.activestate.com/pypm/tissue/] and pep8. Then type:

nosetests --with-tissue --tissue-ignore=E501

or:

nosetests --with-tissue --tissue-ignore=E501 **specific filename**

to run nosetests with the pep8 checks. As we have allowed 140 characters per line, the E501 longer line warning needs to be suppressed.

Sphinx

Documentation is done in-code, and is automatically generated with Sphinx [http://www.sphinx-doc.org/en/stable/]. If no new modules are added, generate the rst and html documentation from the in-code Sphinx comments, by typing (whilst in smrt/doc directory):

make fullhtml

The documentation can be accessed via the index.html page in the smrt/doc/build/html folder.

If you have math symbols to be displayed, this can be done with the imgmath extension (already used), which generates a png and inserts the image at the appropriate place. You may need to set the path to latex and dvipng on your system. From the source directory, this can be done with e.g.:

sphinx-build -b html -D imgmath_latex=/sw/bin/latex -D imgmath_dvipng=/sw/bin/dvipng . ../build/html

or to continue to use :make html or make fullhtml, by setting your path (C-shell) e.g.:

set path = ($path /sw/bin)

or bash:

PATH=$PATH:/sw/bin

Note

Math symbols will need double backslashes in place of the single backslash used in latex.

To generate a list of undocumented elements, whilst in the source directory:

sphinx-build -b coverage . coverage

The files will be listed in the coverage/python.txt file

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 smrt	

 	
 	
 smrt.atmosphere	

 	
 	
 smrt.atmosphere.simple_isotropic_atmosphere	

 	
 	
 smrt.atmosphere.test_atmosphere	

 	
 	
 smrt.core	

 	
 	
 smrt.core.atmosphere	

 	
 	
 smrt.core.error	

 	
 	
 smrt.core.filelock	

 	
 	
 smrt.core.fresnel	

 	
 	
 smrt.core.globalconstants	

 	
 	
 smrt.core.interface	

 	
 	
 smrt.core.layer	

 	
 	
 smrt.core.lib	

 	
 	
 smrt.core.model	

 	
 	
 smrt.core.optional_numba	

 	
 	
 smrt.core.plugin	

 	
 	
 smrt.core.progressbar	

 	
 	
 smrt.core.result	

 	
 	
 smrt.core.run_promise	

 	
 	
 smrt.core.sensitivity_study	

 	
 	
 smrt.core.sensor	

 	
 	
 smrt.core.snowpack	

 	
 	
 smrt.core.test_globalconstants	

 	
 	
 smrt.core.test_interface	

 	
 	
 smrt.core.test_layer	

 	
 	
 smrt.core.test_lib	

 	
 	
 smrt.core.test_result	

 	
 	
 smrt.core.test_sensor	

 	
 	
 smrt.core.test_snowpack	

 	
 	
 smrt.emmodel	

 	
 	
 smrt.emmodel.common	

 	
 	
 smrt.emmodel.commontest	

 	
 	
 smrt.emmodel.dmrt_qca_shortrange	

 	
 	
 smrt.emmodel.dmrt_qcacp_shortrange	

 	
 	
 smrt.emmodel.iba	

 	
 	
 smrt.emmodel.iba_original	

 	
 	
 smrt.emmodel.nonscattering	

 	
 	
 smrt.emmodel.prescribed_kskaeps	

 	
 	
 smrt.emmodel.rayleigh	

 	
 	
 smrt.emmodel.sft_rayleigh	

 	
 	
 smrt.emmodel.test_iba	

 	
 	
 smrt.emmodel.test_iba_original	

 	
 	
 smrt.emmodel.test_prescribed_kskaeps	

 	
 	
 smrt.emmodel.test_rayleigh	

 	
 	
 smrt.emmodel.test_sft_rayleigh	

 	
 	
 smrt.inputs	

 	
 	
 smrt.inputs.altimeter_list	

 	
 	
 smrt.inputs.make_medium	

 	
 	
 smrt.inputs.make_soil	

 	
 	
 smrt.inputs.sensor_list	

 	
 	
 smrt.inputs.test_make_medium	

 	
 	
 smrt.inputs.test_sensor_list	

 	
 	
 smrt.interface	

 	
 	
 smrt.interface.coherent_flat	

 	
 	
 smrt.interface.flat	

 	
 	
 smrt.interface.geometrical_optics	

 	
 	
 smrt.interface.geometrical_optics_backscatter	

 	
 	
 smrt.interface.iem_fung92	

 	
 	
 smrt.interface.iem_fung92_brogioni10	

 	
 	
 smrt.interface.radar_calibration_sphere	

 	
 	
 smrt.interface.test_geometrical_optics	

 	
 	
 smrt.interface.test_iem_fung92	

 	
 	
 smrt.interface.test_iem_fung92_brogioni10	

 	
 	
 smrt.interface.transparent	

 	
 	
 smrt.interface.vector3	

 	
 	
 smrt.microstructure_model	

 	
 	
 smrt.microstructure_model.autocorrelation	

 	
 	
 smrt.microstructure_model.exponential	

 	
 	
 smrt.microstructure_model.gaussian_random_field	

 	
 	
 smrt.microstructure_model.homogeneous	

 	
 	
 smrt.microstructure_model.independent_sphere	

 	
 	
 smrt.microstructure_model.sampled_autocorrelation	

 	
 	
 smrt.microstructure_model.sticky_hard_spheres	

 	
 	
 smrt.microstructure_model.test_autocorrelation	

 	
 	
 smrt.microstructure_model.test_exponential	

 	
 	
 smrt.microstructure_model.test_sticky_hard_spheres	

 	
 	
 smrt.microstructure_model.teubner_strey	

 	
 	
 smrt.microstructure_model.unified_autocorrelation	

 	
 	
 smrt.microstructure_model.unified_scaled_exponential	

 	
 	
 smrt.microstructure_model.unified_sticky_hard_spheres	

 	
 	
 smrt.microstructure_model.unified_teubner_strey	

 	
 	
 smrt.permittivity	

 	
 	
 smrt.permittivity.brine	

 	
 	
 smrt.permittivity.generic_mixing_formula	

 	
 	
 smrt.permittivity.ice	

 	
 	
 smrt.permittivity.saline_ice	

 	
 	
 smrt.permittivity.saline_snow	

 	
 	
 smrt.permittivity.saline_water	

 	
 	
 smrt.permittivity.snow_mixing_formula	

 	
 	
 smrt.permittivity.test_generic_mixing_formula	

 	
 	
 smrt.permittivity.test_ice	

 	
 	
 smrt.permittivity.test_saline_ice	

 	
 	
 smrt.permittivity.test_snow_mixing_formula	

 	
 	
 smrt.permittivity.water	

 	
 	
 smrt.permittivity.wetice	

 	
 	
 smrt.permittivity.wetsnow	

 	
 	
 smrt.rtsolver	

 	
 	
 smrt.rtsolver.dort	

 	
 	
 smrt.rtsolver.dort_nonormalization	

 	
 	
 smrt.rtsolver.nadir_lrm_altimetry	

 	
 	
 smrt.rtsolver.test_dort	

 	
 	
 smrt.rtsolver.test_nadir_lrm_altimetry	

 	
 	
 smrt.rtsolver.waveform_model	

 	
 	
 smrt.runner	

 	
 	
 smrt.substrate	

 	
 	
 smrt.substrate.flat	

 	
 	
 smrt.substrate.geometrical_optics	

 	
 	
 smrt.substrate.geometrical_optics_backscatter	

 	
 	
 smrt.substrate.iem_fung92	

 	
 	
 smrt.substrate.iem_fung92_brogioni10	

 	
 	
 smrt.substrate.radar_calibration_sphere	

 	
 	
 smrt.substrate.reflector	

 	
 	
 smrt.substrate.reflector_backscatter	

 	
 	
 smrt.substrate.rough_choudhury79	

 	
 	
 smrt.substrate.soil_qnh	

 	
 	
 smrt.substrate.soil_wegmuller	

 	
 	
 smrt.substrate.test_flat	

 	
 	
 smrt.substrate.test_reflector	

 	
 	
 smrt.substrate.test_rough_choudhury79	

 	
 	
 smrt.substrate.test_soil_qnh	

 	
 	
 smrt.substrate.test_soil_wegmuller	

 	
 	
 smrt.substrate.transparent	

 	
 	
 smrt.utils	

 	
 	
 smrt.utils.dmrt_qms_legacy	

 	
 	
 smrt.utils.hut_legacy	

 	
 	
 smrt.utils.memls_legacy	

 	
 	
 smrt.utils.mpl_plots	

 	
 	
 smrt.utils.repo_tools	

 Index

 Index pages by letter:

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

 Full index on one page
 (can be huge)

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index
